Hello,
Let's assume n the number searched.
nine less 3 times n is written 9-3n
Answer:
Final answer is
.
Step-by-step explanation:
Given problem is
.
Now we need to simplify this problem.
![\sqrt[3]{x}\cdot\sqrt[3]{x^2}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Bx%7D%5Ccdot%5Csqrt%5B3%5D%7Bx%5E2%7D)
![\sqrt[3]{x^1}\cdot\sqrt[3]{x^2}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Bx%5E1%7D%5Ccdot%5Csqrt%5B3%5D%7Bx%5E2%7D)
Apply formula
![\sqrt[n]{x^p}\cdot\sqrt[n]{x^q}=\sqrt[n]{x^{p+q}}](https://tex.z-dn.net/?f=%5Csqrt%5Bn%5D%7Bx%5Ep%7D%5Ccdot%5Csqrt%5Bn%5D%7Bx%5Eq%7D%3D%5Csqrt%5Bn%5D%7Bx%5E%7Bp%2Bq%7D%7D)
so we get:
![\sqrt[3]{x^1}\cdot\sqrt[3]{x^2}=\sqrt[3]{x^{1+2}}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Bx%5E1%7D%5Ccdot%5Csqrt%5B3%5D%7Bx%5E2%7D%3D%5Csqrt%5B3%5D%7Bx%5E%7B1%2B2%7D%7D)
![\sqrt[3]{x^1}\cdot\sqrt[3]{x^2}=\sqrt[3]{x^{3}}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Bx%5E1%7D%5Ccdot%5Csqrt%5B3%5D%7Bx%5E2%7D%3D%5Csqrt%5B3%5D%7Bx%5E%7B3%7D%7D)
![\sqrt[3]{x^1}\cdot\sqrt[3]{x^2}=x](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Bx%5E1%7D%5Ccdot%5Csqrt%5B3%5D%7Bx%5E2%7D%3Dx)
Hence final answer is
.
if you were to use the first ordered pair, your answer would be y - 2 = 11/3(x-7) and with the second ordered pair : y + 9 = 11/3(x-4
Answer:
x = 100 degrees
Step-by-step explanation:
There are 360 degrees total in this figure. Since 160 is already shown, we can subtract it from 360 to solve for x. 360 - 160 = 200. So, 200 degrees is split among the remaining values, which are 2 x's. Since each x has the same value, we can divide 200 evenly among the two of them. 200/2 = 100. So, x = 100.
P.S.: Sorry if this is long-winded, I haven't taken geometry in a while. I hope I explained it well enough for you and other Brainly users.
Answer: The second graph
In all but the 3 graphs, the data is perfectly symmetrical. This means that the mean and the median would be the same.
However, in the second graph the data is skewed to the right. This means that the mean would also be skewed to the right due to the larger scores there. Using the median in this case would give a clearer picture of the data.