Answer:
The rate of change of the height is 0.021 meters per minute
Step-by-step explanation:
From the formula

Differentiate the equation with respect to time t, such that


To differentiate the product,
Let r² = u, so that

Then, using product rule
![\frac{dV}{dt} = \frac{1}{3}\pi [u\frac{dh}{dt} + h\frac{du}{dt}]](https://tex.z-dn.net/?f=%5Cfrac%7BdV%7D%7Bdt%7D%20%3D%20%5Cfrac%7B1%7D%7B3%7D%5Cpi%20%5Bu%5Cfrac%7Bdh%7D%7Bdt%7D%20%2B%20h%5Cfrac%7Bdu%7D%7Bdt%7D%5D)
Since 
Then, 
Using the Chain's rule

∴ ![\frac{dV}{dt} = \frac{1}{3}\pi [u\frac{dh}{dt} + h(\frac{du}{dr} \times \frac{dr}{dt})]](https://tex.z-dn.net/?f=%5Cfrac%7BdV%7D%7Bdt%7D%20%3D%20%5Cfrac%7B1%7D%7B3%7D%5Cpi%20%5Bu%5Cfrac%7Bdh%7D%7Bdt%7D%20%2B%20h%28%5Cfrac%7Bdu%7D%7Bdr%7D%20%5Ctimes%20%5Cfrac%7Bdr%7D%7Bdt%7D%29%5D)
Then,
![\frac{dV}{dt} = \frac{1}{3}\pi [r^{2} \frac{dh}{dt} + h(2r) \frac{dr}{dt}]](https://tex.z-dn.net/?f=%5Cfrac%7BdV%7D%7Bdt%7D%20%3D%20%5Cfrac%7B1%7D%7B3%7D%5Cpi%20%5Br%5E%7B2%7D%20%5Cfrac%7Bdh%7D%7Bdt%7D%20%2B%20h%282r%29%20%5Cfrac%7Bdr%7D%7Bdt%7D%5D)
Now,
From the question


At the instant when 
and 
We will determine the value of h, using





Now, Putting the parameters into the equation
![\frac{dV}{dt} = \frac{1}{3}\pi [r^{2} \frac{dh}{dt} + h(2r) \frac{dr}{dt}]](https://tex.z-dn.net/?f=%5Cfrac%7BdV%7D%7Bdt%7D%20%3D%20%5Cfrac%7B1%7D%7B3%7D%5Cpi%20%5Br%5E%7B2%7D%20%5Cfrac%7Bdh%7D%7Bdt%7D%20%2B%20h%282r%29%20%5Cfrac%7Bdr%7D%7Bdt%7D%5D)
![236 = \frac{1}{3}\pi [(99)^{2} \frac{dh}{dt} + (\frac{20}{363\pi }) (2(99)) (7)]](https://tex.z-dn.net/?f=236%20%3D%20%5Cfrac%7B1%7D%7B3%7D%5Cpi%20%5B%2899%29%5E%7B2%7D%20%5Cfrac%7Bdh%7D%7Bdt%7D%20%2B%20%28%5Cfrac%7B20%7D%7B363%5Cpi%20%7D%29%20%282%2899%29%29%20%287%29%5D)
![236 \times 3 = \pi [9801 \frac{dh}{dt} + (\frac{20}{363\pi }) 1386]](https://tex.z-dn.net/?f=236%20%5Ctimes%203%20%3D%20%5Cpi%20%5B9801%20%5Cfrac%7Bdh%7D%7Bdt%7D%20%2B%20%28%5Cfrac%7B20%7D%7B363%5Cpi%20%7D%29%201386%5D)






Hence, the rate of change of the height is 0.021 meters per minute.
Answer:
This is easy -- it's just a list of steps. At this level, the problems are pretty simple.
Let's just do one, then I'll write out the list of steps for you.
Find the inverse of f( x ) = -( 1 / 3 )x + 1
STEP 1: Stick a "y" in for the "f(x)" guy:
y = -( 1 / 3 )x + 1
STEP 2: Switch the x and y
( because every (x, y) has a (y, x) partner! ):
x = -( 1 / 3 )y + 1
STEP 3: Solve for y:
x = -( 1 / 3 )y + 1 ... multiply by 3 to ditch the fraction ... 3x = -y + 3 ... ditch the +3 ... subtract 3 from both sides ... 3x - 3 = -y ... multiply by -1 ... -3x + 3 = y ... y = -3x + 3
STEP 4: Stick in the inverse notation, f^( -1 )( x )
f^( -1 )( x ) = -3x + 3
Step-by-step explanation:
The answer would be 37 r. 9
1) number of cards that aren't : number of cards that are 3
we have 48 cards that arent 3 and 4 cards that are. that means that odds are:
12:1 of not drawing 3
2) fallow same logic. its just opposite.
1:12
3) same logic. but there are only 2 black 7 cards which means that odds are:
50:2 or
25:1
4) opposite of previous.
1:25