Cost of a sweatshirt = $32
Then
Cost of 14 sweatshirts = (32 * 14) dollars
= 448 dollars
Cost of a t-shirt = $14
Cost of 32 t-shirts = (32 * 14) dollars
= 448 dollars
So it can seen from the deduction that the cost of 14 sweatshirts and 32 t-shirts comes out to be same and equal to $448. I hope the answer and the procedure of doing this problem is clear to you. It is important to look at all the details given in the question and then start solving the problem.
Answer:
![\mathbf{\{ x \in Z: X_E(x) = 1\} = E}](https://tex.z-dn.net/?f=%5Cmathbf%7B%5C%7B%20x%20%5Cin%20Z%3A%20X_E%28x%29%20%3D%201%5C%7D%20%20%3D%20E%7D)
Step-by-step explanation:
Let E be the set of all even positive integers in the universe Z of integers,
i.e
E = {2,4,6,8,10 ....∞}
be the characteristic function of E.
∴
![X_E(x) = \left \{ {{1 \ if \ x \ \ is \ an \ element \ of \ E} \atop {0 \ if \ x \ \ is \ not \ an \ element \ of \ E}} \right.](https://tex.z-dn.net/?f=X_E%28x%29%20%3D%20%5Cleft%20%5C%7B%20%7B%7B1%20%5C%20if%20%20%5C%20x%20%5C%20%5C%20%20is%20%5C%20an%20%5C%20element%20%5C%20of%20%5C%20E%7D%20%5Catop%20%7B0%20%5C%20if%20%20%5C%20x%20%5C%20%5C%20%20is%20%5C%20not%20%5C%20an%20%20%5C%20element%20%5C%20of%20%5C%20E%7D%7D%20%5Cright.)
For XE(2)
since x is an element of E (i.e the set of all even numbers)
For XE(-2)
since - 2 is less than 0 , and -2 is not an element of E
For { x ∈ Z: XE(x) = 1}
This can be read as:
x which is and element of Z such that X is also an element of x which is equal to 1.
∴
![\{ x \in Z: X_E(x) = 1\} = \{ x \in Z | x \in E\} \\ \\ \mathbf{\{ x \in Z: X_E(x) = 1\} = E}](https://tex.z-dn.net/?f=%5C%7B%20x%20%5Cin%20Z%3A%20X_E%28x%29%20%3D%201%5C%7D%20%3D%20%5C%7B%20x%20%5Cin%20Z%20%7C%20x%20%5Cin%20E%5C%7D%20%5C%5C%20%5C%5C%20%20%5Cmathbf%7B%5C%7B%20x%20%5Cin%20Z%3A%20X_E%28x%29%20%3D%201%5C%7D%20%20%3D%20E%7D)
E = {2,4,6,8,10 ....∞}
Answer:
D
Step-by-step explanation:
All real number less than 5
Answer:
peanut butter cookies:8
sugar cookies:2
chocolate chip cookies:5
ratio: 4:1:2.5
Step-by-step explanation:
x=peanut butter cookies
y=sugar cookies
a=chocolate chip cookies
40=2x+3y+3.6a
15=x+y+a
x=a+3
15=(a+3)+y+a
y=12-2a
40=2(a+3)+3(12-2a)+3.6a
a=5
x=8
y=2