The options are;
1) AB is bisected by CD
2) CD is bisected by AB
3) AE = 1/2 AB
4) EF = 1/2 ED
5) FD= EB
6) CE + EF = FD
Answer:
Options 1, 3 & 6 are correct
Step-by-step explanation:
We are told that Point E is the midpoint of AB. Thus, any line that passes through point E will bisect AB into two equal parts.
The only line passing through point E is line CD.
Thus, we can say that line AB is bisected by pine CD. - - - (1)
Also, since E is midpoint of Line AB, it means that;
AE = EB
Thus, AE = EB = ½AB - - - (2)
Also, we are told that F is the mid-point of CD.
Thus;
CF = FD
Point E lies between C and F.
Thus;
CE + EF = CF
Since CF =FD
Thus;
CE + EF = FD - - - (3)
Answer:
16.2
Step-by-step explanation:
The angle internal to the triangle at B is the supplement of the one shown, so is 65°. That is equal to the angle internal to the triangle at D. Since the vertical angles at C are congruent, the two triangles are similar by the AA theorem.
Corresponding sides of similar triangles are proportional, so we can write the proportion shown in the attachment:
BC/FC = DC/AC
BC = FC(DC/AC) = 21.6(7.2/9.6)
BC = 16.2 . . . . matches the first choice
Answer:
Option (D)
Step-by-step explanation:
Length of the bar EG = 1.6x
If F is a point on the bar such that,
EF + FG = EG
Measure of segment EF = 6
Measure of FG = x
By substituting measures of each side,
6 + x = 1.6x
1.6x - x = 6
0.6x = 6
x = 10
Length of EG = x + 6
= 10 + 6
= 16 units
Option (D) will be the correct option.