1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Georgia [21]
3 years ago
13

The time it takes for a planet to complete its orbit around a particular star is called the? planet's sidereal year. The siderea

l year of a planet is related to the distance the planet is from the star. The accompanying data show the distances of the planets from a particular star and their sidereal years. Complete parts? (a) through? (e).
I figured out what
(a) is already.
(b) Determine the correlation between distance and sidereal year.
(c) Compute the? least-squares regression line.
(d) Plot the residuals against the distance from the star.
(e) Do you think the? least-squares regression line is a good? model?
Planet
Distance from the? Star, x?(millions of? miles)
Sidereal? Year, y
Planet 1
36
0.22
Planet 2
67
0.62
Planet 3
93
1.00
Planet 4
142
1.86
Planet 5
483
11.8
Planet 6
887
29.5
Planet 7
? 1,785
84.0
Planet 8
? 2,797
165.0
Planet 9
?3,675
248.0

Mathematics
1 answer:
BartSMP [9]3 years ago
4 0

Answer:

(a) See below

(b) r = 0.9879  

(c) y = -12.629 + 0.0654x

(d) See below

(e) No.

Step-by-step explanation:

(a) Plot the data

I used Excel to plot your data and got the graph in Fig 1 below.

(b) Correlation coefficient

One formula for the correlation coefficient is  

r = \dfrac{\sum{xy} - \sum{x} \sum{y}}{\sqrt{\left [n\sum{x}^{2}-\left (\sum{x}\right )^{2}\right]\left [n\sum{y}^{2} -\left (\sum{y}\right )^{2}\right]}}

The calculation is not difficult, but it is tedious.

(i) Calculate the intermediate numbers

We can display them in a table.

<u>    x   </u>    <u>      y     </u>   <u>       xy     </u>    <u>              x²    </u>   <u>       y²    </u>

   36       0.22              7.92               1296           0.05

   67        0.62            42.21              4489           0.40

   93         1.00            93.00           20164           3.46

 433        11.8          5699.4          233289        139.24

 887      29.3         25989.1          786769       858.49

1785      82.0        146370          3186225      6724

2797     163.0         455911         7823209    26569

<u>3675 </u>  <u> 248.0  </u>    <u>   911400      </u>  <u>13505625</u>   <u> 61504        </u>

9965   537.81     1545776.75  25569715   95799.63

(ii) Calculate the correlation coefficient

r = \dfrac{\sum{xy} - \sum{x} \sum{y}}{\sqrt{\left [n\sum{x}^{2}-\left (\sum{x}\right )^{2}\right]\left [n\sum{y}^{2} -\left (\sum{y}\right )^{2}\right]}}\\\\= \dfrac{9\times 1545776.75 - 9965\times 537.81}{\sqrt{[9\times 25569715 -9965^{2}][9\times 95799.63 - 537.81^{2}]}} \approx \mathbf{0.9879}

(c) Regression line

The equation for the regression line is

y = a + bx where

a = \dfrac{\sum y \sum x^{2} - \sum x \sum xy}{n\sum x^{2}- \left (\sum x\right )^{2}}\\\\= \dfrac{537.81\times 25569715 - 9965 \times 1545776.75}{9\times 25569715 - 9965^{2}} \approx \mathbf{-12.629}\\\\b = \dfrac{n \sum xy  - \sum x \sum y}{n\sum x^{2}- \left (\sum x\right )^{2}} -  \dfrac{9\times 1545776.75  - 9965 \times 537.81}{9\times 25569715 - 9965^{2}} \approx\mathbf{0.0654}\\\\\\\text{The equation for the regression line is $\large \boxed{\mathbf{y = -12.629 + 0.0654x}}$}

(d) Residuals

Insert the values of x into the regression equation to get the estimated values of y.

Then take the difference between the actual and estimated values to get the residuals.

<u>    x    </u>   <u>      y     </u>   <u>Estimated</u>   <u>Residual </u>

    36        0.22        -10                 10

    67        0.62          -8                  9

    93        1.00           -7                  8

   142        1.86           -3                  5

  433       11.8             19               -  7

  887     29.3             45               -16  

 1785     82.0            104              -22

2797    163.0            170               -  7

3675   248.0            228               20

(e) Suitability of regression line

A linear model would have the residuals scattered randomly above and below a horizontal line.

Instead, they appear to lie along a parabola (Fig. 2).

This suggests that linear regression is not a good model for the data.

You might be interested in
Tessa spent $22 on 11 song downloads. How much did each song cost?
Reika [66]

Answer:

Each song cost $2

Step-by-step explanation:

2 times 11 is 22

Make me brainliest if this helps!

4 0
3 years ago
Read 2 more answers
What are angles 3 and 4 called in the diagram below ?
trapecia [35]

Alternate interior angles.

6 0
3 years ago
Read 2 more answers
Encuentre la suma: 564 + 3,598 =?<br> 3,034<br> 4,052<br> 4,162<br> 9,238
Scrat [10]
The answer is 4,162 for 564+3,598
5 0
3 years ago
What is the surface area of the cube below?
insens350 [35]

Answer:

24^2

Step-by-step explanation:

3 0
3 years ago
A number is divided by five. Then subtract 8. The result is 12. What was the<br> original number?
zlopas [31]

Answer:

5

Step-by-step explanation:

5 / 4 = 20 20 - 8 =12

4 0
2 years ago
Other questions:
  • What is the x value when the Y intercept is 1
    9·1 answer
  • The usual price of a sweatshirt is 18$, what is its sale price
    11·1 answer
  • Help me I don't understand this ​
    15·1 answer
  • 5/8 9/x the figures are similar find x
    6·1 answer
  • Why are some graphs limited to the first quadrant?
    8·2 answers
  • Which letter? is it help plzzzzzzzzzzzzzzzzzz
    11·2 answers
  • Please give an explanation on why the answer is the answer
    6·1 answer
  • Which of the following shows the correct solution steps and solution to 2x + 7 = -11
    7·2 answers
  • Mira drove 180 miles in 3 hours. If she drove at a constant speed, what speed was she driving?
    7·1 answer
  • Find the missing side of each triangle. 8 km and 16 km
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!