1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Georgia [21]
3 years ago
13

The time it takes for a planet to complete its orbit around a particular star is called the? planet's sidereal year. The siderea

l year of a planet is related to the distance the planet is from the star. The accompanying data show the distances of the planets from a particular star and their sidereal years. Complete parts? (a) through? (e).
I figured out what
(a) is already.
(b) Determine the correlation between distance and sidereal year.
(c) Compute the? least-squares regression line.
(d) Plot the residuals against the distance from the star.
(e) Do you think the? least-squares regression line is a good? model?
Planet
Distance from the? Star, x?(millions of? miles)
Sidereal? Year, y
Planet 1
36
0.22
Planet 2
67
0.62
Planet 3
93
1.00
Planet 4
142
1.86
Planet 5
483
11.8
Planet 6
887
29.5
Planet 7
? 1,785
84.0
Planet 8
? 2,797
165.0
Planet 9
?3,675
248.0

Mathematics
1 answer:
BartSMP [9]3 years ago
4 0

Answer:

(a) See below

(b) r = 0.9879  

(c) y = -12.629 + 0.0654x

(d) See below

(e) No.

Step-by-step explanation:

(a) Plot the data

I used Excel to plot your data and got the graph in Fig 1 below.

(b) Correlation coefficient

One formula for the correlation coefficient is  

r = \dfrac{\sum{xy} - \sum{x} \sum{y}}{\sqrt{\left [n\sum{x}^{2}-\left (\sum{x}\right )^{2}\right]\left [n\sum{y}^{2} -\left (\sum{y}\right )^{2}\right]}}

The calculation is not difficult, but it is tedious.

(i) Calculate the intermediate numbers

We can display them in a table.

<u>    x   </u>    <u>      y     </u>   <u>       xy     </u>    <u>              x²    </u>   <u>       y²    </u>

   36       0.22              7.92               1296           0.05

   67        0.62            42.21              4489           0.40

   93         1.00            93.00           20164           3.46

 433        11.8          5699.4          233289        139.24

 887      29.3         25989.1          786769       858.49

1785      82.0        146370          3186225      6724

2797     163.0         455911         7823209    26569

<u>3675 </u>  <u> 248.0  </u>    <u>   911400      </u>  <u>13505625</u>   <u> 61504        </u>

9965   537.81     1545776.75  25569715   95799.63

(ii) Calculate the correlation coefficient

r = \dfrac{\sum{xy} - \sum{x} \sum{y}}{\sqrt{\left [n\sum{x}^{2}-\left (\sum{x}\right )^{2}\right]\left [n\sum{y}^{2} -\left (\sum{y}\right )^{2}\right]}}\\\\= \dfrac{9\times 1545776.75 - 9965\times 537.81}{\sqrt{[9\times 25569715 -9965^{2}][9\times 95799.63 - 537.81^{2}]}} \approx \mathbf{0.9879}

(c) Regression line

The equation for the regression line is

y = a + bx where

a = \dfrac{\sum y \sum x^{2} - \sum x \sum xy}{n\sum x^{2}- \left (\sum x\right )^{2}}\\\\= \dfrac{537.81\times 25569715 - 9965 \times 1545776.75}{9\times 25569715 - 9965^{2}} \approx \mathbf{-12.629}\\\\b = \dfrac{n \sum xy  - \sum x \sum y}{n\sum x^{2}- \left (\sum x\right )^{2}} -  \dfrac{9\times 1545776.75  - 9965 \times 537.81}{9\times 25569715 - 9965^{2}} \approx\mathbf{0.0654}\\\\\\\text{The equation for the regression line is $\large \boxed{\mathbf{y = -12.629 + 0.0654x}}$}

(d) Residuals

Insert the values of x into the regression equation to get the estimated values of y.

Then take the difference between the actual and estimated values to get the residuals.

<u>    x    </u>   <u>      y     </u>   <u>Estimated</u>   <u>Residual </u>

    36        0.22        -10                 10

    67        0.62          -8                  9

    93        1.00           -7                  8

   142        1.86           -3                  5

  433       11.8             19               -  7

  887     29.3             45               -16  

 1785     82.0            104              -22

2797    163.0            170               -  7

3675   248.0            228               20

(e) Suitability of regression line

A linear model would have the residuals scattered randomly above and below a horizontal line.

Instead, they appear to lie along a parabola (Fig. 2).

This suggests that linear regression is not a good model for the data.

You might be interested in
I need help with these problems please
Sedbober [7]

241/4 or 60.25......................................

3 0
4 years ago
Help please thanks!!
Crank
Table a seems the most likely to be correct

Consider giving me brainliest
8 0
3 years ago
A- A counter rotation of 270 around the origin
pochemuha

Answer:

Step-by-step explanation:

how do u delete ur answer

6 0
4 years ago
What is the area of the rectangle
Sedbober [7]

Answer:

what does the rectangle look like?

7 0
3 years ago
A kid at the bus stop is tossing a coin. He tosses the coin 19 times and it lands on heads eight times. If the kid tosses the co
notka56 [123]

Answer:

I honestly dont know

Step-by-step explanation:

4 0
3 years ago
Other questions:
  • What are the equations of the lines of symmetry for the figure shown?
    10·1 answer
  • The rule T(1,-4) degrees Ro, 180 degrees(x,y) is applied to rectangle KLMN
    8·1 answer
  • Evaluate 15-0.75w+8x when w=12 and x=1/2
    7·1 answer
  • The dimensions of a box are x, 2x, and 3x. Each dimension is increased by 3. Calculate the volume of the box.
    5·2 answers
  • 10 x ( -9 + (-6) ) <br> --------------------------
    14·2 answers
  • GRANDMA HAS 4 BAGS OF SOIL FOR HER FLOWER POTS ESCH FLOWER POT NEEDS 3/4 OF A BAG OF SOIL HOW MANY FLOWER POTS CAN SHE FILL
    14·2 answers
  • 4n-6 in as a undistributed expression
    11·1 answer
  • 4.*
    8·1 answer
  • A furniture store book shelf was priced at
    12·2 answers
  • Hi, please help me me by demonstrating how to solve these 2 questions step by step :)
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!