The effluent flow in concentration and particulate mass flow will be 0.198m³/sec.
<h3>How to calculate the effluent flow?</h3>
It should be noted that the total inflow will be equal to the total outflow. Therefore,
0.2 + 0.048 = 0.05 + We
Collect like terms
Qe = 0.2 + 0.048 - 0.05
Qe = 0.198m³/sec
The concentration will be:
= (360 × 1000)/0.05
= 7200mg/L.
Learn more about effluent flow on:
brainly.com/question/22714269
#SPJ1
Answer:
This is very easy Cuz We have 2Na2O We have O2 so thats molecule of Oxygen and its same on product We need to balance Na on start We have 1 on product We have 2 so Just put 2 at start....
Explanation:
Sorry for bad english not my first language :(
2Na+O2-->2Na20
Answer:
Total number of heat absorbed is 4.08kJ
Explanation:
Explanation is contained in the picture attached
The answer is 267.93 g
Molar mass of CaBr2 is the sum of atomic masses of Ca and Br:
Mr(CaBr2) = Ar(Ca) + 2Ar(Br)
Ar(Ca) = 40 g/mol
Ar(Br) = 79.9 g/mol
Mr(CaBr2) = 40 + 2 * 79.9 = 199.8 g/mol
The percentage of Br in CaBr2 is:
2Ar(Br) / Mr(CaBr2) * 100 = 2 * 79.9 / 199.8 * 100 = 79.98%
Now make a proportion:
x g in 79.98%
335 g in 100%
x : 79.98% = 335 g : 100%
x = 79.98% * 335 g : 100%
x = 267.93 g
Well for a start, this makes absolutely no sense, "discovered a fuel that burns so hot that it becomes cold."
<span>And yes, it's not science if the experiment can't be repeated. In fact they should WANT it to be repeated so that you can get credit for discovering something new and then possibly harness this effect to produce useful applications. </span>
<span>For all we know they had a fewer of LN2 in the lab that got shredded by the blast, LN2 could certainly have frozen many things (not metal though, since metal is already solid at room temperature, (except for mercury)), and afterwards would leave no trace.</span>