1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sergeinik [125]
3 years ago
9

Please show all work cuase I don’t understand thank you

Mathematics
1 answer:
Natali [406]3 years ago
5 0

Answer:

13a. 0.92 miles

13b. C

Step-by-step explanation:

13a. The first ride costs $2.75 more than the second ride.  Each quarter mile after the first quarter mile costs $0.75, so the difference in distance is:

0.75 d = 2.75

d = 3.67

The difference is 3.67 quarter miles, or 0.92 miles.

13b. The total cost is the cost of the first quarter mile plus the cost of the rest of the quarter miles.

C(n) = 2.50 + 0.75 (n − 1)

You might be interested in
X^2-x+2=0<br> Please use the quadratic formula
Ainat [17]

Answer:

\boxed{\sf x=\cfrac{1\pm \sqrt{-7} }{2}}

Step-by-step explanation:

\sf x^2-x+2=0

<u>Use quadratic formula:</u>

\boxed{\sf \frac{-b\pm \sqrt{b^2-4ac}}{2a}}

\sf a=1, b=-1, c=2

___________________________

\sf x_1,_2=\cfrac{-\left(-1\right)\pm \sqrt{\left(-1\right)^2-4\times \:1\times \:2}}{2\times \:1}

  • \sf \sqrt{\left(-1\right)^2-4\times \:1\times \:2}
  • \sf =\sqrt{-7}

_________________

\sf x_1,_2\cfrac{-\left(-1\right)\pm \sqrt{-7}}{2\times \:1}

  • \sf -(-1)=1
  • 2\times 1=2

\sf x_1,_2=\cfrac{1\pm \sqrt{-7} }{2}

_______________________________________

<u>Learn more: brainly.com/question/22286698</u>

4 0
2 years ago
Please please help me
enyata [817]

The area of a parallelogram is given by

A=bh

Now, if we consider the 9.9 inches side as the base, then the height is the one labeled with 5.5 inches.

If instead we choose the 11 inches side as the base, the height is h.

So, we can express the area in this two equivalent ways:

A = 9.9\cdot 5.5 = 11\cdot h

Solving for h, we have

h = \dfrac{9.9\cdot 5.5}{11} = 4.95

8 0
3 years ago
X/4 - y/3 =1 X and Y axis standard form
Semenov [28]

Answer:

Step-by-step explanation:

x/4 - y/3 = 1..multiply everything by the LCD....which is 12

3x - 4y = 12 <== standard form

=====================================

if it makes it easier for u, x/4 is the same as (1/4)x and y/3 is the same as (1/3)y

so ur problem can be written as : (1/4)x - (1/3)y = 1....multiply by 12

12(1/4)x - 12(1/3)y = 12(1)

(12/4)x - (12/3)y = 12.....reduce

3x - 4y = 12

5 0
3 years ago
Round the quantity to the given place value. 382.993 to nearest hundredth
adoni [48]

Answer: It is (383,000)

Hope this helps, have a great day/night!

~IFoundJiminsLostJams~

Step-by-step explanation:

3 0
2 years ago
Solve irrational equation pls
rusak2 [61]
\hbox{Domain:}\\&#10;x^2+x-2\geq0 \wedge x^2-4x+3\geq0 \wedge x^2-1\geq0\\&#10;x^2-x+2x-2\geq0 \wedge x^2-x-3x+3\geq0 \wedge x^2\geq1\\&#10;x(x-1)+2(x-1)\geq 0 \wedge x(x-1)-3(x-1)\geq0 \wedge (x\geq 1 \vee x\leq-1)\\&#10;(x+2)(x-1)\geq0 \wedge (x-3)(x-1)\geq0\wedge x\in(-\infty,-1\rangle\cup\langle1,\infty)\\&#10;x\in(-\infty,-2\rangle\cup\langle1,\infty) \wedge x\in(-\infty,1\rangle \cup\langle3,\infty) \wedge x\in(-\infty,-1\rangle\cup\langle1,\infty)\\&#10;x\in(-\infty,-2\rangle\cup\langle3,\infty)


&#10;\sqrt{x^2+x-2}+\sqrt{x^2-4x+3}=\sqrt{x^2-1}\\&#10;x^2-1=x^2+x-2+2\sqrt{(x^2+x-2)(x^2-4x+3)}+x^2-4x+3\\&#10;2\sqrt{(x^2+x-2)(x^2-4x+3)}=-x^2+3x-2\\&#10;\sqrt{(x^2+x-2)(x^2-4x+3)}=\dfrac{-x^2+3x-2}{2}\\&#10;(x^2+x-2)(x^2-4x+3)=\left(\dfrac{-x^2+3x-2}{2}\right)^2\\&#10;(x+2)(x-1)(x-3)(x-1)=\left(\dfrac{-x^2+x+2x-2}{2}\right)^2\\&#10;(x+2)(x-3)(x-1)^2=\left(\dfrac{-x(x-1)+2(x-1)}{2}\right)^2\\&#10;(x+2)(x-3)(x-1)^2=\left(\dfrac{-(x-2)(x-1)}{2}\right)^2\\&#10;(x+2)(x-3)(x-1)^2=\dfrac{(x-2)^2(x-1)^2}{4}\\&#10;4(x+2)(x-3)(x-1)^2=(x-2)^2(x-1)^2\\
&#10;4(x+2)(x-3)(x-1)^2-(x-2)^2(x-1)^2=0\\&#10;(x-1)^2(4(x+2)(x-3)-(x-2)^2)=0\\&#10;(x-1)^2(4(x^2-3x+2x-6)-(x^2-4x+4))=0\\&#10;(x-1)^2(4x^2-4x-24-x^2+4x-4)=0\\&#10;(x-1)^2(3x^2-28)=0\\&#10;x-1=0 \vee 3x^2-28=0\\&#10;x=1 \vee 3x^2=28\\&#10;x=1 \vee x^2=\dfrac{28}{3}\\&#10;x=1 \vee x=\sqrt{\dfrac{28}{3}} \vee x=-\sqrt{\dfrac{28}{3}}\\

There's one more condition I forgot about
-(x-2)(x-1)\geq0\\&#10;x\in\langle1,2\rangle\\

Finally
x\in(-\infty,-2\rangle\cup\langle3,\infty) \wedge x\in\langle1,2\rangle \wedge x=\{1,\sqrt{\dfrac{28}{3}}, -\sqrt{\dfrac{28}{3}}\}\\&#10;\boxed{\boxed{x=1}}
3 0
3 years ago
Other questions:
  • Which of the following numbers can be expressed as non-terminating decimals? 8 over 9, 3 over 5, 1 over 6, 7 over 2 3 over 5 and
    7·1 answer
  • I need help on number 11 and 18 on front of The page please Mean Median Mode and range please Thank you
    12·1 answer
  • Round 132,654 to the nearest ten thousand
    15·1 answer
  • What kind of meals do math teachers eat
    6·1 answer
  • A real estate agent is working for a developer who claims that the average commute time to downtown is 20 minutes with a standar
    12·2 answers
  • a plot of land is rectangular and has an area of x^2-5x-24m^2 . the length is x+3m. Find the width of the plot.
    14·1 answer
  • If f(x) = -7x + 5x2 + 10, what does f(-2) equal?
    15·1 answer
  • Good at math &amp; need points? help!!
    6·1 answer
  • Brainliest if correct please help
    8·1 answer
  • I need help as soon as possible! Please help me! Thank you very much! No links.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!