Explanation:
a. The line joining the midpoints of the parallel bases is perpendicular to both of them. It is the line of symmetry for the trapezoid. This means the angles and sides on one side of that line of symmetry are congruent to the corresponding angles and sides on the other side of the line. The diagonals are the same length.
__
b. We observe that adjacent pairs of points have the same x-coordinate, so are on vertical lines, which have undefined slope. KN is a segment of the line x=1; LM is a segment of the line x=3. If the trapezoid is isosceles, the midpoints of these segments will be on a horizontal line. The midpoint of KN is at y=(3-2)/2 = 1/2. The midpoint of LM is at y=(1+0)/2 = 1/2. These points are on the same horizontal line, so the trapezoid <em>is isosceles</em>.
__
c. We observed in part (b) that the parallel sides are KN and LM. The coordinate difference between K and L is (1, 3) -(3, 1) = (-2, 2). That is, segment KL is the hypotenuse of an isosceles right triangle with side lengths 2, so the lengths of KL and MN are both 2√2.
_____
For part (c), we used the shortcut that the hypotenuse of an isosceles right triangle is √2 times the leg length.
The answer is none. There are no solutions
Answer:
we're is the answer
Step-by-step explanation:
were
Answer:
15 different swing sets
Step-by-step explanation:
The swing set is composed by one swing and one slide.
There is 5 different types of swing, so there are 5 possibilities to fill the one swing we need.
There are 3 different types of slides, so there are 3 possibilities to fill the one slide we need.
So, to find the total number of swing sets, we just need to multiply the swing possibilities and the slide possibilities:
Number of sets = 5 * 3 = 15 different sets