Answer:
I believe C.
Explanation:
I am pretty sure it's C but I don't really see it too well so I can't read the top two the best.
Answer:
a = 2, b = -9, c = 3
Step-by-step explanation:
Replacing x, y values of the points in the equation y = a*x^2 + b*x +c give the following:
(-1,14)
14 = a*(-1)^2 + b*(-1) + c
(2,-7)
-7 = a*2^2 + b*2 + c
(5, 8)
8 = a*5^2 + b*5 + c
Rearranging:
a - b + c = 14
4*a + 2*b + c = -7
25*a + 5*b + c = 8
This is a linear system of equations with 3 equations and 3 unknows. In matrix notation the system is A*x = b whith:
A =
1 -1 1
4 2 1
25 5 1
x =
a
b
c
b =
14
-7
8
Solving A*x = b gives x = Inv(A)*b, where Inv(A) is the inverse matrix of A. From calculation software (I used Excel) you get:
inv(A) =
0.055555556 -0.111111111 0.055555556
-0.388888889 0.444444444 -0.055555556
0.555555556 0.555555556 -0.111111111
inv(A)*b
2
-9
3
So, a = 2, b = -9, c = 3
Answer:
<W,<J, <K
Step-by-step explanation:
3. A=bh/2
2A=bh
h=2A/b.
8. Dy-Cx=E
Dy=E+Cx
y=(E+Cx)/D
The sum of the 9th square number and 3rd cube number is 108