Answer:
I assume that this is a quadratic equation, something like:
y = -47*x^2 - 24x + (-36)
we can rewrite it as:
y = -47x^2 - 24x - 36
Ok, this is a quadratic equation and we want to find the maximum value.
First, you can notice that the leading coefficient is negative.
This means that the arms of the graph will open downwards.
Then we can conclude that the vertex of the equation is the "higher" point, thus the maximum value will be at the vertex.
Remember that for a general function
y = a*x^2 + b*x + c
the vertex is at:
x = -b/2a
So, in our case:
y = -47x^2 - 24x - 36
The vertex will be at:
x = -(-24)/(2*-47) = -12/47
So we just need to evaluate the function in this to find the maximum value.
Remember that "evaluating" the function in x = -12/47 means that we need to change al the "x" by the number (-12/47)
y = -47*(-12/47)^2 - 24*(-12/47) - 36
y = -32.94
That is the maximum value of the function, -32.94
<h2>
Answer:</h2>
The height of the box is:
4 ft.
<h2>
Step-by-step explanation:</h2>
Let "h" denotes the height of the box.
Length of box is denoted by "l"
and breadth or width of box is denoted by "b"
We are given l=18 ft
b=8 ft.
Also we are given surface area of rectangular box= 496 ft²
As we know that the surface area of box is given by:

i.e.

Divide both side by 2.

on dividing both side by 26 we get:

Hence, the height of the box is:
4 ft.