Answer:
Heat required = mass× latent heat Q = 0.15 × 871 ×
Complete question:
Point charges q1=- 4.10nC and q2=+ 4.10nC are separated by a distance of 3.60mm , forming an electric dipole. The charges are in a uniform electric field whose direction makes an angle 36.8 ∘ with the line connecting the charges. What is the magnitude of this field if the torque exerted on the dipole has magnitude 7.30×10−9 N⋅m ? Express your answer in newtons per coulomb to three significant figures.
Answer:
The magnitude of this field is 826 N/C
Explanation:
Given;
The torque exerted on the dipole, T = 7.3 x 10⁻⁹ N.m
PEsinθ = T
where;
E is the magnitude of the electric field
P is the dipole moment
First, we determine the magnitude dipole moment;
Magnitude of dipole moment = q*r
P = 4.1 x 10⁻⁹ x 3.6 x 10⁻³ = 1.476 x 10⁻¹¹ C.m
Finally, we determine the magnitude of this field;

E = 826 N/C (in three significant figures)
Therefore, the magnitude of this field is 826 N/C
If we pull an object vertically upwards then we need to apply a force which is equal in the magnitude of the weight of the object

now when we pull the same object upwards along an inclined plane with angle then we require a force which will balance the component of weight along the inclined
so it is given as

so as if we compare the two forces we can say that since the value of sine is always less than 1 for an angle less than 90 degree
so in the 2nd case when we pull the object along the inclined plane it will require less effort
so correct answer is
<em>A. reduce effort</em>
Yes, eg., when 2 bodies move in opposite directions
, the relative velocity of each is greater than the individual velocity of either