Answer:
f(2n)-f(n)=log2
b.lg(lg2+lgn)-lglgn
c. f(2n)/f(n)=2
d.2nlg2+nlgn
e.f(2n)/(n)=4
f.f(2n)/f(n)=8
g. f(2n)/f(n)=2
Step-by-step explanation:
What is the effect in the time required to solve a prob- lem when you double the size of the input from n to 2n, assuming that the number of milliseconds the algorithm uses to solve the problem with input size n is each of these function? [Express your answer in the simplest form pos- sible, either as a ratio or a difference. Your answer may be a function of n or a constant.]
from a
f(n)=logn
f(2n)=lg(2n)
f(2n)-f(n)=log2n-logn
lo(2*n)=lg2+lgn-lgn
f(2n)-f(n)=lg2+lgn-lgn
f(2n)-f(n)=log2
2.f(n)=lglgn
F(2n)=lglg2n
f(2n)-f(n)=lglg2n-lglgn
lg2n=lg2+lgn
lg(lg2+lgn)-lglgn
3.f(n)=100n
f(2n)=100(2n)
f(2n)/f(n)=200n/100n
f(2n)/f(n)=2
the time will double
4.f(n)=nlgn
f(2n)=2nlg2n
f(2n)-f(n)=2nlg2n-nlgn
f(2n)-f(n)=2n(lg2+lgn)-nlgn
2nLg2+2nlgn-nlgn
2nlg2+nlgn
5.we shall look for the ratio
f(n)=n^2
f(2n)=2n^2
f(2n)/(n)=2n^2/n^2
f(2n)/(n)=4n^2/n^2
f(2n)/(n)=4
the time will be times 4 the initial tiote tat ratio are used because it will be easier to calculate and compare
6.n^3
f(n)=n^3
f(2n)=(2n)^3
f(2n)/f(n)=(2n)^3/n^3
f(2n)/f(n)=8
the ratio will be times 8 the initial
7.2n
f(n)=2n
f(2n)=2(2n)
f(2n)/f(n)=2(2n)/2n
f(2n)/f(n)=2
Answer:
A
Step-by-step explanation:
The inverse is just the opposite it is a flip
Answer:
What is it?
Step-by-step explanation:
Answer:
610
61*10 = 610
You can then subtract that from 742.
Let
x = the number of tapers (each coss $1)
y = the number of pillars (each costs $4)
z = the number of jars (each costs $6)
There are 8 candles in each basket, therefore
x + y + z = 8 (1)
The cost per basket is $24, therefore
x + 4y + 6z = 24 (2)
The number of tapers equals the sum of pillars and jars, therefore
x = y + z (3)
Substitute (3) into (1) and into (2).
y + z + y + z = 8
2y + 2z = 8
y + z = 4 (4)
y + z + 4y + 6z = 24
5y + 7z = 24 (5)
From (4), y = 4 -z. Substitute into (5).
5(4 - z) + 7z = 24
2z + 20 = 24
2z = 4
z = 2
y = 4 - z = 4 - 2 = 2
x = y + z = 2 + 2 = 4
Answer: 4 tapers, 2 pillars, 2 jars.