Answer:
look at the picture
Explanation:
There are total 118 elements, out of which 92 are found in nature while the remaining have been artificially prepared. These elements are divided into metals, non-metals and metalloids depending upon their properties.
<h3>
Answer:</h3>
1. Irreversible Inhibition-Inhibitor may permanently modify an enzyme
2. Irreversible inhibition- Tamiflu, a transition state analog, reversibly binds to neuraminindase
3. Competitive Inhibition-Inhibitor binds reversibly to an enzyme's active
4.Irreversible inhibition-Inhibitor binds to an enzyme at a site other than active site
5. Mixed inhibition-The Al3+ ion binds to acetylcholinesterase or to the acetylcholinesterase- substrate complex
6. Irreversible inhibition-DIPF permanently modifies the hydroxyl group of a Serine residue at the active site
<h3>
Explanation:</h3>
- An enzyme is a biological catalyst that catalysis chemical reactions.
- Enzyme activity is influenced by several factors which include enzyme inhibitors, temperature, and pH among others.
- Enzyme inhibitors are molecules that bind to the enzyme thus interfering with enzyme activity and preventing the binding of substrate to the enzyme.
- Inhibitors may either irreversibly or reversibly bind the enzymes.
- Competitive inhibitors compete with substrates for the active sites while non-competitive inhibitors bind irreversibly to other sites on the enzyme other than the active site.
- Tamiflu is an example of a competitive inhibitor.
- DIPF is an example of a non-competitive inhibitor as it binds the enzyme permanently.
Explanation:
It is known that the maximum value of ml is equal to the vale of l. But the minimum value of n is as follows.
n = l + 1
where, n = principle quantum number
l = azimuthal quantum number
Values of n can be 1, 2, 3, 4 and so on. Whereas the values of l can be 0, 1, 2, 3, and so on.
Also, "m" is known as magnetic quantum number whose values can be equal to -l and +l.
So, when n = 1 then l = 0 and m = 0.
When n = 2 then l = 1 and values of m will be equal to -1, 0, +1. As it is given that the magnetic quantum number ml = -1. Hence, it is only possible when n = 2.
Thus, we can conclude that the smallest possible value of the principal quantum number n of the state is 2.
Answer:
thanks
Explanation:
Mr motivational speaker for your concern