B.)because they are packet tight
I think c is the answer but I could be wrong..
The best answer among the choices given that describes compression would be "<span>region of high pressure in a medium caused by a passing wave." The concepts of air compression is widely used in the industries such as vehicle tires, balloons, and other inflatable materials requiring high air pressure.</span>
Answer:
P (H₂) = 741 torr
Explanation:
Let's begin by listing out the given parameters:
Temperature (water) = 298 K, volume = 45.6 mL,
atmospheric pressure, P (total) = 765 torr, vapor pressure of water, P (H₂O) = 24 torr
To get the pressure of inside the tube, P (H₂), we apply Dalton's Law of Partial Pressure and we have:
P (total) = P (H₂) + P (H₂O)
P (total) = 765 torr, P (H₂O) = 24 torr
P (H₂) = P (total) - P (H₂O) = 765 - 24
P (H₂) = 741 torr
It therefore becomes clear that the pressure of H₂(g) is 741 torr
Answer:
V₂ = 106.5 mL
Explanation:
Given data:
Initial volume =200 mL
Initial pressure = 2 atm
Initial temperature = 35 °C (35 +273 = 308 K)
Final temperature = 55°C (55+273 = 328 K)
Final volume = ?
Final pressure = 4 atm
Formula:
P₁V₁/T₁ = P₂V₂/T₂
P₁ = Initial pressure
V₁ = Initial volume
T₁ = Initial temperature
P₂ = Final pressure
V₂ = Final volume
T₂ = Final temperature
Solution:
V₂ = P₁V₁ T₂/ T₁ P₂
V₂ = 2 atm ×200 mL × 328 K / 308 K ×4 atm
V₂ = 131200 atm .mL. K / 1232 K.atm
V₂ = 106.5 mL