Answer:
SSS
Step-by-step explanation:
Answer:
x-y
Step-by-step explanation:
X is greater than y so we are subtracting the smaller number from the bigger number
That means we do not need the absolute value signs since x-y will be positive
|x-y| when x> y
x-y
Using numbers
| 5-2| 5>2
5-2
Answer:
I can but not willing right now so sorry
Answer: There is sufficient evidence to reject the dealer's claim that the mean price is at least $20,500
Step-by-step explanation:
given that;
n = 14
mean Ж = 19,850
standard deviation S = 1,084
degree of freedom df = n - 1 = ( 14 -1 ) = 13
H₀ : ц ≥ 20,500
H₁ : ц < 20,500
Now the test statistics
t = (Ж - ц) / ( s/√n)
t = ( 19850 - 20500) / ( 1084/√14)
t = -2.244
we know that our degree of freedom df = 13
from the table, the area under the t-distribution of the left of (t=-2.244) and for (df=13) is 0.0215
so P = 0.0215
significance ∝ = 0.05
we can confidently say that since our p value is less than the significance level, we reject the null hypothesis ( H₀ : ц ≥ 20,500 )
There is sufficient evidence to reject the dealer's claim that the mean price is at least $20,500
Answer:
10x - 2y
Step-by-step explanation:
<em>simplify</em><em> </em><em>the</em><em> </em><em>expression</em><em>.</em><em> </em>
<em>8x</em><em>–</em><em>2y</em><em> </em><em>+</em><em> </em><em>x</em><em> </em><em>+</em><em> </em><em>x</em><em> </em>
<em>combine</em><em> </em><em>numbers</em><em> </em><em>that</em><em> </em><em>have</em><em> </em><em>the</em><em> </em><em>same</em><em> </em><em>variables</em><em> </em>
<em>8x</em><em> </em><em>+</em><em> </em><em>x</em><em> </em><em>+</em><em> </em><em>x</em><em> </em>
<em>*</em><em>those</em><em> </em><em>x</em><em> </em><em>have</em><em> </em><em>1</em><em> </em><em>coefficient</em><em> </em><em>each</em><em>.</em><em> </em>
<em>it</em><em> </em><em>will</em><em> </em><em>be</em><em> </em><em>8x</em><em>+</em><em>1x</em><em>+</em><em>1x</em><em> </em><em>=</em><em> </em><em>10x</em><em> </em><em>then</em><em> </em><em>–</em><em>2y</em>
<em>10x</em><em>–</em><em>2y</em><em>.</em>
Hope it helps :)