1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
never [62]
3 years ago
11

Solve for x 2 + 2 * x = 10

Mathematics
1 answer:
inysia [295]3 years ago
7 0

Answer:

6

Step by step explanation:

2 + 2 * x = 10

2x+2=10

2x+2−2=10−2

Therefore, x = 6

You might be interested in
Can someone help not just whatever
bogdanovich [222]
4.) (the next prime function)
2x2x3x2
2x2x3x2x2
2x2x3x2x2x2
7 0
3 years ago
If cos(x) = Three-fourths and tan(x) < 0, what is cos(2x)?
makvit [3.9K]

Step-by-step explanation:

The value of sin(2x) is \sin(2x) = - \frac{\sqrt{15}}{8}sin(2x)=−

8

15

How to determine the value of sin(2x)

The cosine ratio is given as:

\cos(x) = -\frac 14cos(x)=−

4

1

Calculate sine(x) using the following identity equation

\sin^2(x) + \cos^2(x) = 1sin

2

(x)+cos

2

(x)=1

So we have:

\sin^2(x) + (1/4)^2 = 1sin

2

(x)+(1/4)

2

=1

\sin^2(x) + 1/16= 1sin

2

(x)+1/16=1

Subtract 1/16 from both sides

\sin^2(x) = 15/16sin

2

(x)=15/16

Take the square root of both sides

\sin(x) = \pm \sqrt{15/16

Given that

tan(x) < 0

It means that:

sin(x) < 0

So, we have:

\sin(x) = -\sqrt{15/16

Simplify

\sin(x) = \sqrt{15}/4sin(x)=

15

/4

sin(2x) is then calculated as:

\sin(2x) = 2\sin(x)\cos(x)sin(2x)=2sin(x)cos(x)

So, we have:

\sin(2x) = -2 * \frac{\sqrt{15}}{4} * \frac 14sin(2x)=−2∗

4

15

∗

4

1

This gives

\sin(2x) = - \frac{\sqrt{15}}{8}sin(2x)=−

8

15

6 0
2 years ago
Read 2 more answers
I will give you brainliest, if you provide an accurate explanation.
Molodets [167]

Answer:

sqrt(i) =0.707106781 + 0.707106781 i

Most of the numbers we know, and work with, are Real Numbers. The Real Number System includes counting numbers, fractions, terminating decimals, positive numbers, negative numbers, zero, repeating decimals, never ending and non-repeating decimals, numbers that are expressed as radicals, and even pi (π).

The natural numbers are the set of counting numbers

• There are infinitely many numbers in a set of numbers.

• The natural numbers are "closed" under addition and multiplication.

The addition of two natural numbers creates another natural number.

The multiplication of two natural numbers creates another natural number.

closed under addition and multiplication.

BUT ...

The subtraction of two natural numbers does NOT necessarily create another natural number

The division of two natural numbers does NOT necessarily create another natural number  

The whole numbers are the set of counting numbers (natural numbers) along with zero

   

• There are infinitely many numbers in this set of numbers.

• The set of whole numbers is "closed" under addition and multiplication.

Integers:

• The integers are the set of all of the natural numbers,

    plus their additive inverses and zero

• The integers are "closed" under addition, multiplication and subtraction,

    but NOT under division

Rational Numbers:

• The rational numbers are the set of numbers which can be expressed as a ratio

    (a fraction) between two integers.

• Integers are rational numbers since 5 can be written as the fraction 5/1.

• Decimals which terminate are rational numbers.

• Decimals which have a repeating pattern are rational numbers. 1/3 = 0.3333333...

• The rational numbers are "closed" under addition, subtraction, and multiplication. Under division, we run into the problem of division by 0, which makes the statement that "the rationals are closed under division" false. Some texts state that "the rationals are closed under division as long as the division is not by zero" which is a true statement.

Irrational Numbers:

The irrational numbers are the set of number which can NOT be written as a ratio (fraction).

• Decimals which never end nor repeat are irrational numbers.

• Irrational numbers are "not closed" under addition, subtraction, multiplication or division.

• Examples of irrational numbers: rad2, π

8 0
3 years ago
Read 2 more answers
Question 12
klasskru [66]
Mr. Jones's prescription calls for 1.04 tablets per day. Based on this information, how many tablets should Mr. Jones take per day? a) 1.25 O b) 1.5 c) 10 d) 2
3 0
2 years ago
How can I solve this does anyone knows?
Ipatiy [6.2K]
A. C = 17h + 15
b. 83 = 17h + 15 
    -15           - 15  subtract 15 from both sides 
    68 = 17h
    ------------
         17               divide both sides by 17
      4=h  
  They cleaned the house for 4 hours
c. C = 20x
to do this last part, you would put both equations into the calculator under y=, then look at the table to determine when the price is the same. According to the calculator, the price is the same at 5 hours 
7 0
3 years ago
Read 2 more answers
Other questions:
  • Can someone give me some tips of how to study. I have already tried writing everything in my lesson but it doesn't seem to work
    13·1 answer
  • How many times does 8 go into 60??? i cant remember even if it does
    13·2 answers
  • A manufacturer of potato chips would like to know whether its bag filling machine works correctly at the 420 gram setting. It is
    15·1 answer
  • Papa john is 50 years old. His age is 2 years more than 3 times the age of Jimmy John. How old is Jimmy?
    13·1 answer
  • What sets of ordered pairs represents a function ? A={(2,-2), (5,-5) (-2,2)(-5,5)} B={(4,2), (4,-2) , (9,3) (9,-3)}
    12·1 answer
  • What is 6 3/8 written as a decimal?
    7·2 answers
  • So i need help with the question below.
    13·1 answer
  • A right triangle has side lengths that are consecutive interest and a perimeter of 12 feet what are the angles of the triangle
    9·1 answer
  • I-Ready
    11·1 answer
  • PLEASE HELP 10 POINTS!!
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!