Answer:
The function has been flipped due to the negative in front.
The function has been shifted 17 units to the left.
The function has been shifted 4.3 units down.
Step-by-step explanation:
When functions are transformed there are a few simple rules:
- Adding/subtracting inside the parenthesis to the input shifts the function left(+) and right(-).
- Adding/subtracting outside the parenthesis to the output shifts the function up(+) and down(-).
- Multiplying the function by a number less than 1 compresses it towards the x-axis.
- Multiplying the function by a number greater than 1 stretches it away from the x-axis.
- Multiplying by a negative flips the graph.
The graph of
compares to
in the following ways:
The function has been flipped due to the negative in front.
The function has been shifted 17 units to the left.
The function has been shifted 4.3 units down.
Answer:
The surface of the prism is 84m²
Step-by-step explanation:
You have 4 figures here (two the same triangles)
you need to determine the surface of each and then sum it to one. This will be your final surface.
rectangles:
3*6= 18m²
5*6 = 30m²
4*6 = 24m²
triangles:
You need to determine the square of the triangles from the Heron's formula.
Heron's formula states that the area of a triangle whose sides have lengths a, b, and c is
,
where s is the semi-perimeter of the triangle; that is,
.
So the permimeter of the triangle is
2p=4+5+3 = 12m
p = 6m
![S = \sqrt{p*(p-a)*(p-b)*(p-c)} = \sqrt{6*(6-3)*(6-4)*(6-5)} = \sqrt{6*3*2*1} =\sqrt{36} =6[m^{2} ]](https://tex.z-dn.net/?f=S%20%3D%20%5Csqrt%7Bp%2A%28p-a%29%2A%28p-b%29%2A%28p-c%29%7D%20%20%3D%20%5Csqrt%7B6%2A%286-3%29%2A%286-4%29%2A%286-5%29%7D%20%20%3D%20%5Csqrt%7B6%2A3%2A2%2A1%7D%20%3D%5Csqrt%7B36%7D%20%3D6%5Bm%5E%7B2%7D%20%5D)
So the surface of the prism is a total sum of all surfaces:
P = 18m²+30m²+ 24m²+2*6m² = 84m²
Answer:
<h2>B. 243</h2><h2 />
Step-by-step explanation:
F(x) = 3^x
then
F(5) = 3^5 = 3×3×3×3×3 =243
Answer: -6 is the answer
Step-by-step explanation:
Answer: Option A

Step-by-step explanation:
In the graph we have a piecewise function composed of a parabola and a line.
The parabola has the vertex in the point (0, 2) and cuts the y-axis in y = 2.
The equation of this parabola is
Then we have an equation line
Note that the interval in which the parabola is defined is from -∞ to x = 1. Note that the parabola does not include the point x = 1 because it is marked with an empty circle " о ."
(this is
)
Then the equation of the line goes from x = 1 to ∞ . In this case, the line includes x = 1 because the point at the end of the line is represented by a full circle
.
(this is
)
Then the function is:
