1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Scorpion4ik [409]
3 years ago
5

What’s the Variace of 7, 5, 11, 1, 11

Mathematics
1 answer:
lara31 [8.8K]3 years ago
8 0
The mean is 35/5=7

v=((7-7)^2+(5-7)^2+(11-7)^2+(1-7)^2+(11-7)^2)/5

v=(0+4+16+36+16)/5

v=14.4
You might be interested in
Cone A has a diameter of 10 inches and Cone B has a diameter of 50 inches. If the cones are similar, find the volume ratio of Co
Tju [1.3M]

Answer:

cone A has a diameter of 10 inches and Cone B has a diameter of 50 inches. If the cones are similar, find the volume ratio of Cone A to Cone B.

Step-by-step explanation:

8 0
3 years ago
?simplified the expression
larisa [96]
The first two negatives cancel out and you're left with positive 4. Now go inside the square root and do the exponent. -4*-4 = 16. Then do the -4*3*1 = -12. Do 16-12 = 4. now the square root of 4 = 2. at the dominator is 2*3 = 6. right now they problem should look like 4+- 2/ 6. from there you split the problem in two. so you have 4+2/6   &     4-2/6     then you solve both problems.
           6/6               2/6
             1                  1/3
1 & 1/3 are your answers. I hope this helped!
5 0
3 years ago
Help me please if your right ill give you the brainliest (mybad if i spelled it wrong)
Elina [12.6K]
Function A is linear

y = 5/3x + 0

let me know if this is incorrect
6 0
3 years ago
Mai biked 6 and 3/4 miles today, and Noah biked 4 and 1/2 miles. How many times the length of Noah's bike ride was Mai's bike ri
Daniel [21]

Answer:

2/3 times as far

Step-by-step explanation:

5 0
3 years ago
Read 2 more answers
Consider the equation below. (If an answer does not exist, enter DNE.) f(x) = x3 − 6x2 − 15x + 4 (a) Find the interval on which
kozerog [31]

Answer:

a) The function, f(x) is increasing at the intervals (x < -1.45) and (x > 3.45)

Written in interval form

(-∞, -1.45) and (3.45, ∞)

- The function, f(x) is decreasing at the interval (-1.45 < x < 3.45)

(-1.45, 3.45)

b) Local minimum value of f(x) = -78.1, occurring at x = 3.45

Local maximum value of f(x) = 10.1, occurring at x = -1.45

c) Inflection point = (x, y) = (1, -16)

Interval where the function is concave up

= (x > 1), written in interval form, (1, ∞)

Interval where the function is concave down

= (x < 1), written in interval form, (-∞, 1)

Step-by-step explanation:

f(x) = x³ - 6x² - 15x + 4

a) Find the interval on which f is increasing.

A function is said to be increasing in any interval where f'(x) > 0

f(x) = x³ - 6x² - 15x + 4

f'(x) = 3x² - 6x - 15

the function is increasing at the points where

f'(x) = 3x² - 6x - 15 > 0

x² - 2x - 5 > 0

(x - 3.45)(x + 1.45) > 0

we then do the inequality check to see which intervals where f'(x) is greater than 0

Function | x < -1.45 | -1.45 < x < 3.45 | x > 3.45

(x - 3.45) | negative | negative | positive

(x + 1.45) | negative | positive | positive

(x - 3.45)(x + 1.45) | +ve | -ve | +ve

So, the function (x - 3.45)(x + 1.45) is positive (+ve) at the intervals (x < -1.45) and (x > 3.45).

Hence, the function, f(x) is increasing at the intervals (x < -1.45) and (x > 3.45)

Find the interval on which f is decreasing.

At the interval where f(x) is decreasing, f'(x) < 0

from above,

f'(x) = 3x² - 6x - 15

the function is decreasing at the points where

f'(x) = 3x² - 6x - 15 < 0

x² - 2x - 5 < 0

(x - 3.45)(x + 1.45) < 0

With the similar inequality check for where f'(x) is less than 0

Function | x < -1.45 | -1.45 < x < 3.45 | x > 3.45

(x - 3.45) | negative | negative | positive

(x + 1.45) | negative | positive | positive

(x - 3.45)(x + 1.45) | +ve | -ve | +ve

Hence, the function, f(x) is decreasing at the intervals (-1.45 < x < 3.45)

b) Find the local minimum and maximum values of f.

For the local maximum and minimum points,

f'(x) = 0

but f"(x) < 0 for a local maximum

And f"(x) > 0 for a local minimum

From (a) above

f'(x) = 3x² - 6x - 15

f'(x) = 3x² - 6x - 15 = 0

(x - 3.45)(x + 1.45) = 0

x = 3.45 or x = -1.45

To now investigate the points that corresponds to a minimum and a maximum point, we need f"(x)

f"(x) = 6x - 6

At x = -1.45,

f"(x) = (6×-1.45) - 6 = -14.7 < 0

Hence, x = -1.45 corresponds to a maximum point

At x = 3.45

f"(x) = (6×3.45) - 6 = 14.7 > 0

Hence, x = 3.45 corresponds to a minimum point.

So, at minimum point, x = 3.45

f(x) = x³ - 6x² - 15x + 4

f(3.45) = 3.45³ - 6(3.45²) - 15(3.45) + 4

= -78.101375 = -78.1

At maximum point, x = -1.45

f(x) = x³ - 6x² - 15x + 4

f(-1.45) = (-1.45)³ - 6(-1.45)² - 15(-1.45) + 4

= 10.086375 = 10.1

c) Find the inflection point.

The inflection point is the point where the curve changes from concave up to concave down and vice versa.

This occurs at the point f"(x) = 0

f(x) = x³ - 6x² - 15x + 4

f'(x) = 3x² - 6x - 15

f"(x) = 6x - 6

At inflection point, f"(x) = 0

f"(x) = 6x - 6 = 0

6x = 6

x = 1

At this point where x = 1, f(x) will be

f(x) = x³ - 6x² - 15x + 4

f(1) = 1³ - 6(1²) - 15(1) + 4 = -16

Hence, the inflection point is at (x, y) = (1, -16)

- Find the interval on which f is concave up.

The curve is said to be concave up when on a given interval, the graph of the function always lies above its tangent lines on that interval. In other words, if you draw a tangent line at any given point, then the graph seems to curve upwards, away from the line.

At the interval where the curve is concave up, f"(x) > 0

f"(x) = 6x - 6 > 0

6x > 6

x > 1

- Find the interval on which f is concave down.

A curve/function is said to be concave down on an interval if, on that interval, the graph of the function always lies below its tangent lines on that interval. That is the graph seems to curve downwards, away from its tangent line at any given point.

At the interval where the curve is concave down, f"(x) < 0

f"(x) = 6x - 6 < 0

6x < 6

x < 1

Hope this Helps!!!

5 0
3 years ago
Other questions:
  • Megan invests $1,500 in a certificate of deposit. Each year the certificate of deposit earns 1.3% interest. Does this situation
    13·1 answer
  • Tristan had 95 inches of ribbon. He cut off 27.50 inches. How many inches of ribbon remain?
    7·1 answer
  • List the sides of each triangle in order from shortest to longest
    14·2 answers
  • Use the function f(x) to answer the questions: f(x) = 2x2 − x − 10
    6·1 answer
  • Find the volume of a sphere with a diameter of 25 cm. Approximate pi as 3.14 and round your answer to the nearest hundredth.
    8·1 answer
  • If a/ b = 6/7 and a/c = 2/5 , what is the value of 3b+c in terms of a?
    11·2 answers
  • Please help me out with this!!??!?​
    5·2 answers
  • The volume of a cube is 441cm3.<br> Work out the length of its side rounded to 1 DP.
    9·1 answer
  • UKNOWN LINKS WILL BE REPORTED questions in the picture
    5·1 answer
  • Calculate the length of the side LN given the following data for 37°.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!