The rest of the question is the attached figure.
============================================
Δ AYW a right triangle at Y ⇒⇒⇒ ∴ WA² = AY² + YW²
And AY = YB ⇒⇒⇒ ∴ WA² = YB² + YW² → (1)
Δ BYW a right triangle at Y ⇒⇒⇒ ∴ WB² = BY² + YW² → (2)
From (1) , (2) ⇒⇒⇒ ∴ WA = WB →→ (3)
Δ CXW a right triangle at Y ⇒⇒⇒ ∴ WC² = CX² + XW²
And CX = XB ⇒⇒⇒ ∴ WC² = XB² + XW² → (4)
Δ BXW a right triangle at Y ⇒⇒⇒ ∴ WB² = XB² + XW² → (5)
From (4) , (5) ⇒⇒⇒ ∴ WC = WB →→ (6)
From (3) , (6)
WA = WB = WC
given ⇒⇒⇒ WA = 5x – 8 and WC = 3x + 2
∴ <span> 5x – 8 = 3x + 2</span>
Solve for x ⇒⇒⇒ ∴ x = 5
∴ WB = WA = WC = 3*5 + 2 = 17
The correct answer is option D. WB = 17
Answer:
Given the 2 values, height and the base, of these 2 triangles, we can assume that they are similar (meaning they share the same angles) as we have no other information to determine the height of the tree.
Therefore, if these triangles are similar, their corresponding sides are proportional. In other words, PZ/RT = QZ/ST or RT/PZ=ST/QZ
Hence, if we find the ratio of this, we can use it to find the side <em>h</em>
<em>QZ/ST=PZ/RT</em>
<em>48/12=PZ/4</em>
<em>PZ/4=48/12</em>
<em>(PZ/4)3=48/12</em>
<em>PZ(3)/12=48/12</em>
<em>48/3=16</em>
16=PZ.
3Step-by-step explanation:
The displacement vector is a vector which gives the point's current position with reference to other points apart from points from the origin. The given length here of the minute hand is the radius and the distance can be written as,
r∠θ
which means that the position can be described by the θ.
Answer:
The goodness of fitness test χ²with significance of level ∝= 0.05 and 5 degrees of freedom is 11.07 (One tailed test )
Step-by-step explanation:
For n=6 the degrees of freedom will be n-1 = 5 .
The goodness of fitness test χ²with significance of level ∝= 0.05 and 5 degrees of freedom is 11.07 (One tailed test )
The critical region depends on ∝ and the alternative hypothesis
a) When Ha is σ²≠σ² the critical region is
χ² < χ²(1-∝/2)(n-1) and χ² > χ²(1-∝/2)(n-1) Two tailed test
( χ² < 0.83) and ( χ² > 0.83)
b) When Ha is σ²> σ² the critical region falls in the right tail and its value is
χ² > χ²(∝)(n-1) One tailed test {11.07 (One tailed test )}
c) When Ha is σ² <σ² the critical region will be entirely in the left tail with critical value
χ²(1-∝)(n-1) One tailed test (1.145)
Answer:
0,∞
Thus, the range of the square root function is [0,∞)
Step-by-step explanation:
When its domain is greater than or equal to zero, its inverse is the squaring function. When its domain is all real numbers, its range includes complex numbers such as i, -1.