Answer:
![\sf B) \ y=-\dfrac{1}{5}x-4](https://tex.z-dn.net/?f=%5Csf%20B%29%20%5C%20y%3D-%5Cdfrac%7B1%7D%7B5%7Dx-4)
Explanation:
Equation: y = mx + b [where "m" is slope, "b" is y-intercept]
The y-intercept (b) is -4
![\sf slope: \dfrac{y_2 - y_1}{x_2- x_1} \ \ where \ (x_1 , \ y_1), ( x_2 , \ y_2) \ are \ points](https://tex.z-dn.net/?f=%5Csf%20slope%3A%20%5Cdfrac%7By_2%20-%20y_1%7D%7Bx_2-%20x_1%7D%20%5C%20%5C%20%20where%20%5C%20%28x_1%20%2C%20%5C%20y_1%29%2C%20%28%20x_2%20%2C%20%5C%20y_2%29%20%5C%20are%20%5C%20points)
Here take two points: (0, -4), (5, -5)
![\sf slope \ (m) : \dfrac{-5-(-4)}{5-0} = -\dfrac{1}{5}](https://tex.z-dn.net/?f=%5Csf%20slope%20%5C%20%28m%29%20%3A%20%5Cdfrac%7B-5-%28-4%29%7D%7B5-0%7D%20%20%3D%20%20-%5Cdfrac%7B1%7D%7B5%7D)
![\sf Hence \ equation : y = -\dfrac{1}{5} x -4](https://tex.z-dn.net/?f=%5Csf%20Hence%20%20%20%5C%20equation%20%3A%20%20y%20%3D%20-%5Cdfrac%7B1%7D%7B5%7D%20x%20-4)
Answer: 197.292
Step-by-step explanation:
Answer:
Step-by-step explanation:
Was going to get y’all there in
Y=7 is just a straight horizonal line that is perpendicular to the y axis at 7
and y=1/2x+6, is in y=mx+b form where m=slope and b=yintercept so
to find the intersection, yo just find when both sentances are correct so
y=7
subsitute that into y=1/2x+6
7=1/2x+6
subtract 6 from both sides
1=1/2x
multiply both sides by 2
2=x
so the point (2,7) is the intersection