Answer:
Any [a,b] that does NOT include the x-value 3 in it.
Either an [a,b] entirely to the left of 3, or
an [a,b] entirely to the right of 3
Step-by-step explanation:
The intermediate value theorem requires for the function for which the intermediate value is calculated, to be continuous in a closed interval [a,b]. Therefore, for the graph of the function shown in your problem, the intermediate value theorem will apply as long as the interval [a,b] does NOT contain "3", which is the x-value where the function shows a discontinuity.
Then any [a,b] entirely to the left of 3 (that is any [a,b] where b < 3; or on the other hand any [a,b] completely to the right of 3 (that is any [a,b} where a > 3, will be fine for the intermediate value theorem to apply.
Answer:
Probability can not exceed 1. If an event has a probability of 1, then the event is certain to happen. Example: if you have a bag of 5 blue marbles the probability that you will pull out a blue is 5/5 which simplifies to 1.
Step-by-step explanation:
Answer:
A .cos(x)<1
Step-by-step explanation:
According to the first inequality
cos(x)<1
x < arccos 1
x<0
This therefore does not have a solution within the range 0 ≤ x ≤ 2pi
x cannot be leas than 0. According to the range not value, 0≤x which is equivalent to x≥0. Thus means otvis either x = 0 or x> 0.
For the second option
.cos(x/2)<1
x/2< arccos1
x/2<0
x<0
This inequality also has solution within the range 0 ≤ x ≤ 2pi since 0 falls within the range of values.
For the inequality csc(x)<1
1/sin(x) < 1
1< sin(x)
sinx>1
x>arcsin1
x>90°
x>π/2
This inequality also has solution within the range 0 ≤ x ≤ 2pi since π/2 falls within the range of values
For the inequality csc(x/2)<1
1/sin(x/2) < 1
1< sin(x/2)
sin(x/2)> 1
x/2 > arcsin1
X/2 > 90°
x>180°
x>π
This value of x also has a solution within the range.
Therefore option A is the only inequality that does not have a solution with the range.
Answer:
Step-by-step explanation: