Half past eight or thirty minutes to nine
1600<2570-125.5x<2000 subtract 2570 from all terms...
-970<-125.5x<-570 divide all terms by -125.5 (and reverse signs because of division by a negative!)
7.73>x>4.54 and x is months since January, and since months can only be integers...
x=[5,7]
So January + 5, 6, and 7 respectively are the three months that satisfy the equation...
June, July, and August.
3 eggs for brownies, 2 eggs for cookies.
Because the total count went up 2 for one more batch of cookies, you know that 1C(ookies) = 2 eggs
3C = 6 eggs
15 - 6 = 9 eggs
3B(rownies) = 9 eggs
1B = 3 eggs
Answer:
a) P=0.0175
b) P=0.0189
Step-by-step explanation:
For both options we have to take into account that not only the chance of a "superevent" will disable both suppliers.
The other situation that will disable both is that both suppliers have their "unique-event" at the same time.
As they are, by definition, two independent events, we can calculate the probability of having both events at the same time as the product of both individual probabilities.
a) Then, the probability that both suppliers will be disrupted using option 1 is

b) The probability that both suppliers will be disrupted using option 2:

Pue = probability of a unique event
Pse = probability of a superevent
U have to show us both graphs