The simplified form of the given expression is 2015
<h3>Simplifying expressions </h3>
The given expression is (x-2)(x+2)(x²+4)-(x²+3)(x²-3)+2022
The expression can be simplified as shown below
(x-2)(x+2)(x²+4) - (x²+3)(x²-3) + 2022
x(x+2)-2(x+2)(x²+4) - x²(x²-3) +3(x²-3) + 2022
(x²+2x-2x-4)(x²+4) - (x⁴-3x²+3x²-9) + 2022
(x²-4)(x²+4) - (x⁴-9) + 2022
x²(x²+4) -4(x²+4) - (x⁴-9) + 2022
(x⁴+4x²-4x²-16) - (x⁴-9) + 2022
(x⁴-16) - (x⁴-9) + 2022
x⁴ -16 -x⁴ +9 + 2022
x⁴ -x⁴ -16 +9 +2022
= 2015
Hence, the simplified expression is 2015
Learn more on Simplifying an expression here: brainly.com/question/723406
#SPJ1
Answer:
1080
Step-by-step explanation:
Somehow i got 2.5 guess i am wrong...
Answer:
a) 
b) 
c) 
Step-by-step explanation:
<u>For the question a *</u> you need to find a polynomial of degree 3 with zeros in -3, 1 and 4.
This means that the polynomial P(x) must be zero when x = -3, x = 1 and x = 4.
Then write the polynomial in factored form.

Note that this polynomial has degree 3 and is zero at x = -3, x = 1 and x = 4.
<u>For question b, do the same procedure</u>.
Degree: 3
Zeros: -5/2, 4/5, 6.
The factors are

---------------------------------------

--------------------------------------

--------------------------------------

<u>Finally for the question c we have</u>
Degree: 5
Zeros: -3, 1, 4, -1
Multiplicity 2 in -1

--------------------------------------

--------------------------------------

----------------------------------------

-----------------------------------------
