Let, the numbers = x,y
x/y = 3/5
total ratio units = 3+5 = 8
value of 1 unit = 135/8 = 16.875
So, numbers would be 3(16.875) & 5(16.875) = 50.625 & 84.375
so, your answer is 50.625 & 84.375
Answer:
9. 66°
10. 44°
11. 
12. 
13. 27.3
14. 33.9
15. 22°
16. 24°
Step-by-step explanation:
9. Add 120 + 80 (equals 200) and subtract that from 360 (Because all angles in a quadrilteral add to 360°), this equals 160. Plug the same number in for both variables in the two other angle equations until the two angles add to 160. For shown work on #9, write:
120 + 80 = 200
360 - 200 = 160
12(5) + 6 = 66°
19(5) - 1 = 94°
94 + 66 = 160
10. Because the two sides are marked as congruent, the two angles are as well. This means the unlabeled angle is also 68°. The interior angles of a triangle always add to 180°, so add 68+68 (equals 136) and subtract that from 180, this equals 44. For shown work on #10, write:
68 x 2 = 136
180 - 136 = 44
11. Use the Pythagorean theorem (a² + b² = c²) (Make sure to plug in the hypotenuse for c). Solve the equation. For shown work on #10, write:
a² + b² = c²
a² + 6² = 8²
a² + 36 = 64
a² = 28
a = 
a = 
12. (Same steps as #11) Use the Pythagorean theorem (a² + b² = c²) (Make sure to plug in the hypotenuse for c). Solve the equation. For shown work on #11, write:
a² + b² = c²
a² + 2² = 4²
a² + 4 = 16
a² = 12
a = 
a = 
13. Use SOH CAH TOA and solve with a scientific calculator. For shown work on #13, write:
Sin(47°) = 
x = 27.3
14. Use SOH CAH TOA and solve with a scientific calculator. For shown work on #14, write:
Tan(62°) = 
x = 33.9
15. Use SOH CAH TOA and solve with a scientific calculator. For shown work on #15, write:
cos(θ) = 52/56
θ = cos^-1 (0.93)
θ = 22°
16. (Same steps as #15) Use SOH CAH TOA and solve with a scientific calculator. For shown work on #16, write:
sin(θ) = 4/10
θ = sin^-1 (0.4)
θ = 24°
Good luck!!
Answer: 0.796 meters
Step-by-step explanation:
Circumference of circle =
, where r=radius
Here, Circumference of loop = 2.5 meters
i.e. 


Diameter = 2r = 2(0.398) = 0.796 meters
Hence, The diameter of Taiga's exercise hoop = 0.796 meters
Answer: l = 4 cm, w = 7 cm
Step-by-step explanation:
i think that this is it
Area of trapezoid = a + b/2 * h
a = 20, b = 9, h = 21/-16
20+9/2 * (21-16) = 29/2 * 5 = 72.5
The area of the trapezoid = 72.5 in^2
Area of the rectangle = l * w
l = 16, w = 20
16 * 20 = 320
The area of the rectangle: 320 in^2