1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jeka57 [31]
2 years ago
5

Sadie and Connor both play soccer. Connor scored 2 times as many goals as Sadie. Together they scored 9 goals. Could Sadie have

scored 4 goals? Why or why not?
Yes, because 4 goals is less than the total number of goals scored.
Yes, because 4 goals is less than the number of goals Connor scored.
No, because 4(2) ≠ 9.
No, because 4(2) + 4 ≠ 9.
Mathematics
2 answers:
Vladimir79 [104]2 years ago
8 0

Answer:

No, because 4(2) + 4 ≠ 9

Step-by-step explanation:

I had this on a test and got this answer right.

astraxan [27]2 years ago
7 0

Answer: No, because 4(2) + 4 ≠ 9

Step-by-step explanation:

No, because 4(2) + 4 ≠ 9

You might be interested in
12n^3 + 16n^3 can someone please help me with this?
vodka [1.7K]

Answer:

4n^{3} (3n^{2} + 4)

Step-by-step explanation:

Assuming the problem is asking you to factor out the formula, it can be done easily by finding a common number with the two givens.

4 goes into both 12 and 16 evenly, so we will use this to factor. But that's not all, we have the n-variable to worry about.

Look at the n-variable exponents in the problem, take the highest power that can go be subtracted from both and use that. We have a n^{5} and n^{3}. Since 5 can't go into 3, we must use 3 to factor.

Our factoring variable will therefore be 4n^{3}. Now, use this to simply divide and get the answer:

( 12n^{5} + 16n^{3} ) / 4n^{3}  = 4n^{3}(3n^{2} + 4)

So how did we get this? For the whole numbers, we have to divide: (12/4, 16/4). Next, we have to minus the exponents since we are dividing.

When dividing the 12 and 4, minus the n^{5} and n^{3} to get n^{2}. Get rid of the n^{3} term for the 16 and leave the 4. And there's your answer!

7 0
3 years ago
Find the area of the following figure. Show your work.
Deffense [45]

Answer:

I think the answer is 46 because 9 + 23 + 7 + 7 = 46.

Step-by-step explanation:

                           HOPE THIS HELPS YOU!!!!!!! :) :) :) :) :)

                                SORRY IF IT'S WRONG. :) :) :) :) :)

8 0
2 years ago
Read 2 more answers
Harry cycles 8 kilometres in 30 minutes.<br> Calculate his average speed, in km/h
Lerok [7]
8 km / 0.5 hr
= 16 km/h
4 0
2 years ago
Read 2 more answers
Which of the following phrases are inequalities?
suter [353]

Answer:

B, C D

Step-by-step explanation:

Inequalities are the "alligators"  <   or >  or the "alligators" with lines  ≤  or ≥

<  less than

>greater than

≤  less than or equal to

≥  greater than or equal to

7 0
3 years ago
Read 2 more answers
Prove that
Pani-rosa [81]
Let's start from what we know.

(1)\qquad\sum\limits_{k=1}^n1=\underbrace{1+1+\ldots+1}_{n}=n\cdot 1=n\\\\\\&#10;(2)\qquad\sum\limits_{k=1}^nk=1+2+3+\ldots+n=\dfrac{n(n+1)}{2}\quad\text{(arithmetic  series)}\\\\\\&#10;(3)\qquad\sum\limits_{k=1}^nk\ \textgreater \ 0\quad\implies\quad\left|\sum\limits_{k=1}^nk\right|=\sum\limits_{k=1}^nk

Note that:

\sum\limits_{k=1}^n(-1)^k\cdot k^2=(-1)^1\cdot1^2+(-1)^2\cdot2^2+(-1)^3\cdot3^2+\dots+(-1)^n\cdot n^2=\\\\\\=-1^2+2^2-3^2+4^2-5^2+\dots\pm n^2

(sign of last term will be + when n is even and - when n is odd).
Sum is finite so we can split it into two sums, first S_n^+ with only positive trems (squares of even numbers) and second S_n^- with negative (squares of odd numbers). So:

\sum\limits_{k=1}^n(-1)^k\cdot k^2=S_n^+-S_n^-

And now the proof.

1) n is even.

In this case, both S_n^+ and S_n^- have \dfrac{n}{2} terms. For example if n=8 then:

S_8^+=\underbrace{2^2+4^2+6^2+8^2}_{\frac{8}{2}=4}\qquad\text{(even numbers)}\\\\\\&#10;S_8^-=\underbrace{1^2+3^2+5^2+7^2}_{\frac{8}{2}=4}\qquad\text{(odd numbers)}\\\\\\

Generally, there will be:

S_n^+=\sum\limits_{k=1}^\frac{n}{2}(2k)^2\\\\\\S_n^-=\sum\limits_{k=1}^\frac{n}{2}(2k-1)^2\\\\\\

Now, calculate our sum:

\left|\sum\limits_{k=1}^n(-1)^k\cdot k^2\right|=\left|S_n^+-S_n^-\right|=&#10;\left|\sum\limits_{k=1}^\frac{n}{2}(2k)^2-\sum\limits_{k=1}^\frac{n}{2}(2k-1)^2\right|=\\\\\\=&#10;\left|\sum\limits_{k=1}^\frac{n}{2}4k^2-\sum\limits_{k=1}^\frac{n}{2}\left(4k^2-4k+1\right)\right|=\\\\\\

=\left|4\sum\limits_{k=1}^\frac{n}{2}k^2-4\sum\limits_{k=1}^\frac{n}{2}k^2+4\sum\limits_{k=1}^\frac{n}{2}k-\sum\limits_{k=1}^\frac{n}{2}1\right|=\left|4\sum\limits_{k=1}^\frac{n}{2}k-\sum\limits_{k=1}^\frac{n}{2}1\right|\stackrel{(1),(2)}{=}\\\\\\=&#10;\left|4\dfrac{\frac{n}{2}(\frac{n}{2}+1)}{2}-\dfrac{n}{2}\right|=\left|2\cdot\dfrac{n}{2}\left(\dfrac{n}{2}+1\right)-\dfrac{n}{2}\right|=\left|n\left(\dfrac{n}{2}+1\right)-\dfrac{n}{2}\right|=\\\\\\&#10;

=\left|\dfrac{n^2}{2}+n-\dfrac{n}{2}\right|=\left|\dfrac{n^2}{2}+\dfrac{n}{2}\right|=\left|\dfrac{n^2+n}{2}\right|=\left|\dfrac{n(n+1)}{2}\right|\stackrel{(2)}{=}\\\\\\\stackrel{(2)}{=}&#10;\left|\sum\limits_{k=1}^nk\right|\stackrel{(3)}{=}\sum\limits_{k=1}^nk

So in this case we prove, that:

 \left|\sum\limits_{k=1}^n(-1)^k\cdot k^2\right|=\sum\limits_{k=1}^nk

2) n is odd.

Here, S_n^- has more terms than S_n^+. For example if n=7 then:

S_7^-=\underbrace{1^2+3^2+5^2+7^2}_{\frac{n+1}{2}=\frac{7+1}{2}=4}\\\\\\&#10;S_7^+=\underbrace{2^2+4^4+6^2}_{\frac{n+1}{2}-1=\frac{7+1}{2}-1=3}\\\\\\

So there is \dfrac{n+1}{2} terms in S_n^-, \dfrac{n+1}{2}-1 terms in S_n^+ and:

S_n^+=\sum\limits_{k=1}^{\frac{n+1}{2}-1}(2k)^2\\\\\\&#10;S_n^-=\sum\limits_{k=1}^{\frac{n+1}{2}}(2k-1)^2

Now, we can calculate our sum:

\left|\sum\limits_{k=1}^n(-1)^k\cdot k^2\right|=\left|S_n^+-S_n^-\right|=&#10;\left|\sum\limits_{k=1}^{\frac{n+1}{2}-1}(2k)^2-\sum\limits_{k=1}^{\frac{n+1}{2}}(2k-1)^2\right|=\\\\\\=&#10;\left|\sum\limits_{k=1}^{\frac{n+1}{2}-1}4k^2-\sum\limits_{k=1}^{\frac{n+1}{2}}\left(4k^2-4k+1\right)\right|=\\\\\\=&#10;\left|\sum\limits_{k=1}^{\frac{n-1}{2}-1}4k^2-\sum\limits_{k=1}^{\frac{n+1}{2}}4k^2+\sum\limits_{k=1}^{\frac{n+1}{2}}4k-\sum\limits_{k=1}^{\frac{n+1}{2}}1\right|=\\\\\\

=\left|\sum\limits_{k=1}^{\frac{n-1}{2}-1}4k^2-\sum\limits_{k=1}^{\frac{n+1}{2}-1}4k^2-4\left(\dfrac{n+1}{2}\right)^2+\sum\limits_{k=1}^{\frac{n+1}{2}}4k-\sum\limits_{k=1}^{\frac{n+1}{2}}1\right|=\\\\\\=&#10;\left|-4\left(\dfrac{n+1}{2}\right)^2+4\sum\limits_{k=1}^{\frac{n+1}{2}}k-\sum\limits_{k=1}^{\frac{n+1}{2}}1\right|\stackrel{(1),(2)}{=}\\\\\\&#10;\stackrel{(1),(2)}{=}\left|-4\dfrac{n^2+2n+1}{4}+4\dfrac{\frac{n+1}{2}\left(\frac{n+1}{2}+1\right)}{2}-\dfrac{n+1}{2}\right|=\\\\\\

=\left|-n^2-2n-1+2\cdot\dfrac{n+1}{2}\left(\dfrac{n+1}{2}+1\right)-\dfrac{n+1}{2}\right|=\\\\\\=&#10;\left|-n^2-2n-1+(n+1)\left(\dfrac{n+1}{2}+1\right)-\dfrac{n+1}{2}\right|=\\\\\\=&#10;\left|-n^2-2n-1+\dfrac{(n+1)^2}{2}+n+1-\dfrac{n+1}{2}\right|=\\\\\\=&#10;\left|-n^2-n+\dfrac{n^2+2n+1}{2}-\dfrac{n+1}{2}\right|=\\\\\\=&#10;\left|-n^2-n+\dfrac{n^2}{2}+n+\dfrac{1}{2}-\dfrac{n}{2}-\dfrac{1}{2}\right|=\left|-\dfrac{n^2}{2}-\dfrac{n}{2}\right|=\left|-\dfrac{n^2+n}{2}\right|=\\\\\\

=\left|-\dfrac{n(n+1)}{2}\right|=|-1|\cdot\left|\dfrac{n(n+1)}{2}\right|=\left|\dfrac{n(n+1)}{2}\right|\stackrel{(2)}{=}\left|\sum\limits_{k=1}^nk\right|\stackrel{(3)}{=}\sum\limits_{k=1}^nk

We consider all possible n so we prove that:

\forall_{n\in\mathbb{N}}\quad\left|\sum\limits_{k=1}^n(-1)^k\cdot k^2\right|=\sum\limits_{k=1}^nk
7 0
3 years ago
Other questions:
  • Solve for Y<br> -5y + 8 = -3y + 10?
    10·1 answer
  • Bridget measured a restaurant and made a scale drawing. The restaurant’s kitchen is 6 millimeters long in the drawing. The actua
    10·1 answer
  • What transformations were applied to the graph of the parent function y=tan(x) to produce the function graphed below?
    7·2 answers
  • Answer gets BRAINLIEST If q varies inversely as r, and g = 10 when r = 2.5, find the equation that connects a
    5·1 answer
  • abby makes two different quilts. Each quilts is a square. However, the quilts have diferent perimeter, and areas. Describe the a
    11·2 answers
  • Explain how knowing 50 times 4 =200 helps you find 500 times 400.
    15·1 answer
  • A chess piece is 15 centimeters tall, and its shadow is 13 centimeters long. How far away is the top of the chess piece from the
    15·1 answer
  • Katrina buys a 42-ft roll of fencing to make a rectangular play area for her dogs.
    11·1 answer
  • (GIVING BRAINLIEST!!)
    7·1 answer
  • A university's freshman class has 6200 students. 4836 of those students are majoring
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!