<span>Every atom and molecule has its own chemical potential energy value since atoms and molecules are attracted to each other. Whenever atoms and molecules form ionic or covalent bonds, their individual potential energies are converted into heat or light energy. The heat or light energy is released as the bonds form. Atoms that form strong bonds have lower potential chemical energy levels and release little heat or light, while atoms that form weak bonds have higher potential chemical energy levels and release a lot of heat or light during the formation of chemical bonds.
</span>
The normal atomic orbitals are joined mathematically during the process of hybridization to create new atomic orbitals known as hybrid orbitals. Even if hybrid orbitals are not identical to regular atomic orbitals.
<h3>What are atomic orbitals?</h3>
Atomic theory & quantum mechanics use the mathematical concept of a "atomic orbital" to describe the location and wavelike behavior of an electron within an atom. Each of those orbitals can contain a maximum of electron pairs, each with a unique spin quantum number s.
<h3>How are atomic orbitals calculated?</h3>
Within every of an atom's shells, various orbital combinations can be found. The n=1 shell has just s orbitals; the n=2 shell contains s and p orbitals; the n=3 shell contains s, p, and d orbitals; and the n=4 up shells include all four types of orbitals.
To know more about Atomic orbital visit:
brainly.com/question/28240666
#SPJ4
Answer:
The reaction rate of the both questions remain unchanged.
Explanation:
For question 1: The reaction 1-iodo -2- methylbutane with cyanide ion is an SN2 reaction because the Alkyl halide is a primary alkyl halide. The rate of reaction is dependent on concentration of the nucleophile and the alkyl halide at the same. For the rate of reaction to be affected (increased or decreased), the concentration of nucleophile and the alkyl halide have to be altered.
For question 2: The reaction of 2-iodo -2- methylbutane with ethanol is an SN1 reaction because the Alkyl halide is a tertiary alkyl halide. There are two-step reaction mechanism in this reaction. The first step is the rate determining step which determines the extent of the reaction and hence the rate of reaction. For the rate of reaction to be affected (increased or decreased), the concentration of the Alkyl halide alone will be altered. The rate of reaction is independent of the concentration of the nucleophile.
Answer:
i is the correct answer.
Explanation:
the RAM of aluminum is indeed 27. And since the RAM of substances are measured in terms of the C-12 isotope then R indeed explains why the RAM Al is 27.
Answer:
a. 211.7
Explanation:
Iron Pyrite reacts with Oxygen to produce Iron (II) Oxide and Sulphur (IV) Oxide.
The equation is as follows:
4FeS₂₍s₎ + 11O₂₍g₎ → 2Fe₂O₃₍s₎ + 8SO₂₍g₎
From the equation, 4 moles of FeS₂ produce 8 moles of SO₂.
Therefore the reaction ratio is 4:8 or 1:2
198.20 grams of FeS₂ into moles is calculated as follows:
Moles= Mass/RMM
RMM of FeS₂ is 119.9750g/mol.
Number of moles = 198.20/119.9750g/mol
=1.652 moles of FeS₂
The reaction ratio of FeS₂ to SO₂ produced is 1:2
Thus SO₂ produced = 1.652 moles×2/1=3.304 moles
The mass of SO₂ produced =Moles ×RMM
=3.304 moles ×64.0638 g/mol
=211.667 grams
=211.7g