Answer:
The answer is C. Gas particles have no attractive forces between them.
Explanation:
Answer: 11.0 g of calcium will react with 10.0 grams of water.
Explanation:
To calculate the moles, we use the equation:
moles of
The balanced chemical equation is:
According to stoichiometry :
2 moles of
require = 1 mole of
Thus 0.55 moles of
require=
of
Mass of
Thus 11.0 g of calcium will react with 10.0 grams of water.
The hydrogens and oxygen of a water molecule are held together by covalent bonds.
<h3>
What are covalent bonds?</h3>
A covalent bond is an electron exchange that causes the production of electron pairs between atoms. Covalent bonding is a stable equilibrium of the attractive and repulsive forces between two atoms that occurs when they share electrons.
Bonding pairs or sharing pairs are other names for these electron pairs. Because electrons are shared among several molecules, each atom can reach the equivalent of a full valence shell, resulting in a stable electronic state.
In organic chemistry, covalent bonds are much more common than ionic bonds. Covalent bonds unite the atoms in a single water molecule, whereas hydrogen bonds join two water molecules. Water develops a covalent bond when oxygen shares an electron with each hydrogen atom.
To know more about covalent bonds, refer:
brainly.com/question/3447218
#SPJ4
The enthalpy change of the reaction when sodium hydroxide and sulfuric acid react can be calculated using the mass of solution, temperature change, and specific heat of water.
The balanced chemical equation for the reaction can be represented as,

Given volume of the solution = 101.2 mL + 50.6 mL = 151.8 mL
Heat of the reaction, q =
Δ
m is mass of the solution = 151.8 mL * 
C is the specific heat of solution = 4.18 
ΔT is the temperature change = 
q = 
Moles of NaOH =
NaOH
Moles of
= 
Enthalpy of the reaction = 