Answer:
The correct option is 4
Step-by-step explanation:
The solution is given as

Now for the initial condition the value of C is calculated as

So the solution is given as

Simplifying the equation as

So the correct option is 4
A. The point estimate of μ1 − μ2 is calculated using the value of x1 - x2, therefore:
μ1 − μ2 = x1 – x2 =
7.82 – 5.99
μ1 − μ2 = 1.83
B. The formula for
confidence interval is given as:
Confidence interval
= (x1 –x2) ± z σ
where z is a value
taken from the standard distribution tables at 99% confidence interval, z =
2.58
and σ is calculated
using the formula:
σ = sqrt [(σ1^2 /
n1) + (σ2^2 / n2)]
σ = sqrt [(2.35^2 /
18) + (3.17^2 / 15)]
σ = 0.988297
Going back to the
confidence interval:
Confidence interval
= 1.83 ± (2.58) (0.988297)
Confidence interval
= 1.83 ± 2.55
Confidence interval
= -0.72, 4.38
Answer:
216.5
Step-by-step explanation:
866/4
216.5
Answer:
56
Step-by-step explanation:
6+7b-3a
Substitute:
6+7(8)-3(2)
Solve:
6+56-6
Simplify:
6+50
=56
Answer: function 1
Rate of change of function 1:
Following the format of y=mx+c, the rate of change should be m, so, the rate of change for function 1 = 4
To find the gradient (rate of change):
The two points the line passes through are (x1, y1) and (x2, y2), which in this case is (1, 6) and (3, 10)
(Doesn't matter which is which but you need to make sure that once you decide which is which, you stick to it)
To calculate the gradient, you substitute these values following (y1 - y2)/(x1 - x2)
Gradient of function 2 = (10 - 6)/(3 - 1)
= 2
Therefore, since 4 > 2, rate of change of function 1 > rate of change of function 2.