___
Regarding the bonds in FesO₄, Fe and S have an ionic bond, while S and O have covalent bonds.
Elements form bonds to increase their stability. The main types of bonds are:
- Metallic bonds: they are formed between metals and the electrons are in a delocalized cloud.
- Ionic bonds: they are formed between metals (lose electrons) and nonmetals (gain electrons)
- Covalent bonds: they are formed between nonmetals, which share electrons.
Regarding the bonds in FesO₄:
- Fe is a metal and S a nonmetal, thus they will form ionic bonds.
- S and O are both nonmetals, thus they will form covalent bonds.
Regarding the bonds in FesO₄, Fe and S have an ionic bond, while S and O have covalent bonds.
Learn more: brainly.com/question/23882847
Answer:
(2R,3S)-2-ethoxy-3-methylpentane
and
(2S,3S)-2-ethoxy-3-methylpentane
Explanation:
For this case, we will have
as nucleophile. Also, this compound is also in excess. So, we will have as solvent
a protic solvent. Therefore the Sn1 reaction would be favored.
The first step would be the carbocation formation followed by the attack of the nucleophile. In this case both isomers would be produced: R and S (see figure).
Answer:
osmosis is a process where by solvent or fluid molecules flow from low concentration to high concentration.
So in
A.solvent will flow from B to A because
B = 3.45 M sodium bromide is more concentrated than 3.45 M calcium iodide;
b) solvent still flow from B to A because
A = 5.00 M sucrose is less concentrated than B = 3.00 M potassium nitrate
The density of the metal object=6.0
Given:
Volume of the metal object=1.5ml
Mass of the metal object=9.0g
To find:
Density of the metal object
<u>Step by Step Explanation:
</u>
Solution:
According to the formula, Density of the metal object can be calculated as

Where, m=mass of the metal object
=density of the metal object
v=volume of the metal object
We know the values of v=1.5ml and m=9.0g
Substitute these values in the above equation we get

=9.0/1.5
=6.0
Result:
Thus the density of the metal object is 6.0