Options are as follow,
A) <span>Constant volume, no intermolecular forces of attraction,energy loss in collisions
B) </span><span>No volume, strong intermolecular forces of attraction, perfectly elastic collisions
C) </span><span>Constant volume, no intermolecular forces of attraction, energy gain during collisions
D) </span><span>No volume, no intermolecular forces of attraction, perfectly elastic collisions
Answer:
Option-D (</span>No volume, no intermolecular forces of attraction, perfectly elastic collisions) is the correct answer.
Explanation:
As we know there are no interactions between gas molecules due to which they lack shape and volume and occupies the shape and volume of container in which they are kept. So, we can skip Option-B.
Secondly we also know that the gas molecules move randomly. They collide with the walls of container causing pressure and collide with each other. And these collisions are perfectly elastic and no energy is lost or gained during collisions. Therefore Option-A and C are skipped.
Now we are left with only Option-D, In option D it is given that ideal gas has no volume. This is true related to Ideal gas as it is stated in ideal gas theories that molecules are far apart from each other and the actual volume of gas molecules compared to volume of container is negligible. Hence, for ideal gas Option-D is a correct answer.
A water filter removes impurities from water by means of a fine physical barrier, a chemical process or a biological process. Filters cleanse water to different extents for purposes such as providing agricultural irrigation, accessible drinking water, public and private aquaria, and the safe use of ponds and swimming pools.
Answer:
The sound waves travel from the outer ear and in through the auditory canal, causing the eardrum, or tympanic membrane, to vibrate. This, in turn, causes the three small bones, known as the ossicles, or the hammer, the anvil and the stirrup, in the middle ear to move.
Answer:
3.657 kg
Explanation:
Given:
Enthalpy of combustion of hard coal = -35 kJ/g
Enthalpy of combustion of gasoline = 1.28 × 10⁵ kJ/gal
Density of gasoline = 0.692 g/mL
now,
The heat provide 1 gallon of gasoline provide = 1.28 × 10⁵ kJ
and,
heat provided by the 1 gram of coal = 35 kJ
or
1 kJ of heat is provided by (1/35) gram of hard coal
therefore,
For 1.28 × 10⁵ kJ of heat, mass of hard coal = 1.28 × 10⁵ kJ × (1 / 35)
or
For 1.28 × 10⁵ kJ of heat, mass of hard coal = 3657.14 grams = 3.657 kg