a textbook search committee is condisdering 10 books for possible adoption. The committee has decided to select 5 of the ten for
further consideration. in how many ways can it do so
2 answers:
Answer:
They can do so in 252 ways.
Step-by-step explanation:
The order in which the books are chosen is not important. So we use the combinations formula to solve this question.
Combinations formula:
is the number of different combinations of x objects from a set of n elements, given by the following formula.

In this question:
5 books from a set of 10. So

They can do so in 252 ways.
Answer:
∴ Number of ways to select 5 books from 10 books for adoption is 252 .
Step-by-step explanation:
A Permutation is an ordered Combination. When the order does matter it is a Permutation. There are basically two types of permutation:
- Repetition is Allowed: such as above. It could be "555".
- No Repetition: for example the first three people in a running race. You can't be first and second.
Formula is given by:
, where n is the number of things to choose from, and we choose r of them, no repetitions, order matters. Here , n=10 , r=5.
⇒ 
⇒ 
⇒ 
∴ Number of ways to select 5 books from 10 books for adoption is 252 .
You might be interested in
Answer:

Step-by-step explanation:
tan(30°) = 
cot(30°) = 
sin(60°) = 

You can look at -32 as being -2^5 so if you write (-2^5)^3/5 the 5's cancel out making it -2^3 which equals -8
Answer:
I would say the easiest answer for me is 875
Step-by-step explanation:
Answer:
12
Step-by-step explanation:
You would substitute
4(4)-4
then simplify
16-4
then subtract
12
Thank you for the free points!!!