The circumference of a circle is given by: 2πr, where r is the radius of the circle. Equating 4π, we have 2πr = 4π so the radius of the circle is: r = 4/2 = 2. Then, the area of the circle is given by πr ^ 2 = π * (2 ^ 2) = 4π.Since the square and the circle have the same area, then: Let L be the side of the square, we have: L ^ 2 = 4π, clearing L = 2 * (π ^ (1/2))The perimeter of a square is the sum of its sides: P = L + L + L + L = 2 * (π ^ (1/2)) + 2 * (π ^ (1/2)) + 2 * (π ^ (1/2)) + 2 * (π) ^ (1/2)) P = 8 * (π ^ (1/2))
24
Step-by-step explanation:
Well 6 times 8 is 48 so
8 times 3 is 24
It’s triangular your welcome hint q
Both of these conditions must be true in order for the assumption that the binomial distribution is approximately normal. In other words, if
and
then we can use a normal distribution to get a good estimate of the binomial distribution. If either np or nq is smaller than 5, then a normal distribution wouldn't be a good model to use.
side note: q = 1-p is the complement of probability p