The right answer is metaphase II.
The process is performed in two nuclear and cytoplasmic divisions, called first and second meiotic division or simply meiosis I and meiosis II. Both include prophase, metaphase, anaphase, and telophase. First division prophase is long and consists of 5 stages: leptotene, zygotene, pachytene, diplotene, and diakinesis. It is at this point that genetic recombination takes place at the level of chiasmus.
During meiosis I, the members of each homologous pair of chromosomes are paired during prophase, forming bivalents. During this phase, a protein structure, called synaptonemal complex form, allows recombination between homologous chromosomes. Subsequently, a large condensation of the bivalent chromosomes occurs and go to the metaphase plate during the first metaphase, resulting in the migration of n chromosomes to each of the poles during the first anaphase. This reduction division is responsible for maintaining the number of chromosomes characteristic of each species.
In meiosis II, as in mitosis, the sister chromatids comprising each chromosome are separated and distributed between the nuclei of the daughter cells. Between these two successive steps, there is no DNA replication. The maturation of the daughter cells will result in the gametes.
An enzyme possesses different kinetics for different substrates as a result of this different products are formed.
Discussion:
- Multi-substrate reactions are governed by intricate rate equations that specify how and in what order the substrates bind. If substrate B is altered while the amount of substrate A remains constant, the study of these reactions becomes considerably easier. The enzyme behaves exactly like a single-substrate enzyme in these circumstances, and a plot of v by [S] yields the actual KM and Vmax constants for substrate B.
- These results can be utilized to determine the reaction's mechanism if a series of such measurements are carried out at various fixed concentrations of A. There are two different sorts of mechanisms for an enzyme that accepts two substrates, A and B, and converts them into two products, P and Q: ternary complex and ping-pong.
Learn more about enzymes here:
brainly.com/question/14953274
#SPJ4
The answer to this question is c! Thanks for posting your questions!
Answer:
...were due to single genes and followed simple inheritance patterns (dominant/recessive).
Explanation:
The traits Mendel studied were easy to track because the two possible outcomes were distinct and the trait itself was visible and trackable. The fact that they followed simple inheritance patterns helped him when he was determining his ratios for different crosses because complex inheritance would've muddled his data.