Answer:
266.67Watts
Explanation:
Time = 2.5hr to seconds
3600s = 1hr
2.5hrs = 3600×2.5= 9000s
Force = 32N
Distance = 75km to m
1000m = 1km
75km = 1000×75 = 75000m
Power = workdone / time
Work = force × distance
Therefore work = 32N × 75000m
Work = 2400000Nm
Power = work ➗ time
Power = 2400000Nm ➗ 9000s
Power = 266.67Watts
Watts is the S. i unit of power
I hope this was helpful, please mark as brainliest
Your answer would be D.
If an object has mass, it has gravity, and the more mass it has, the stronger its gravity. During the formation of planets, essentially, various matter and elements pulled and fused together (because of the gravity), forming planetesimals.
The gravitational potential energy of the object is 100 J.
Gravitational potential energy stored in an object is the work done in raising the object to a height <em>h</em> against the gravitational force acting on it.
The gravitational force acting on a body is its weight mg, where m is its mass and g, the acceleration due to gravity.
Work done by a force is equal to the product of the force and the displacement made by the point of application of the force.

The weight of the object is given as 20 J and it is raised to a height of 5 m.

The gravitational potential energy of the object is 100 J.
Answer:
the angle of reflection equals the angle of incidence—θr = θi. The angles are measured relative to the perpendicular to the surface at the point where the ray strikes the surface.
Explanation:
A microscope uses a mirror to reflect light to the specimen under the microscope. ... An astronomical reflecting telescope uses a large parabolic mirror to gather dim light from distant stars. A plane mirror is used to reflect the image to the eyepiece.
Answer:
A moving electric charge creates a magnetic field at all points in the surrounding region.
An electric current in a conductor creates a magnetic field at all points in the surrounding region.
A permanent magnet creates a magnetic field at all points in the surrounding region.
Explanation:
Magnetic field can be produced by:
- moving charges (i.e. a moving electron, or a current in a conductor)
- A magnet
The strength of the magnetic field produced by a current-carrying wire is

where
I is the current
r is the distance from the wire
As we see from the formula, the magnetic field is produced at all points in the surrounding region, because B becomes zero only when r becomes infinite. The same is true for the magnetic field created by a single moving charge or by a magnet.
The following choices instead are not correct:
- A single stationary electric charge creates a magnetic field at all points in the surrounding region.
- A distribution of electric charges at rest creates a magnetic field at all points in the surrounding region.
Because they involve the presence of stationary charges, and stationary charges do not produce magnetic fields.