1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vilka [71]
3 years ago
15

You are walking on a beach and find a mystery piece of metal. You take it back to your lab and measure its mass to be 0.5 kg. In

order to heat the metal 1 degree K, you must add 115 J of heat. Identify the metal. q =mCΔT
A) Brass
B) Copper
C) Platinum
D) Silver
Physics
1 answer:
murzikaleks [220]3 years ago
7 0

D) Silver

Explanation:

Given parameters:

Mass of metal = 0.5kg

temperature change = 1K

Quantity of heat = 115J

Unknown;

Identity of the metal = ?

Solution:

We first find the specific heat of the unknown metal and compare with the table of specific heat of metals.

   C = \frac{Q}{mΔt}

  C = \frac{115}{1 x 0.5} = 230JKg⁻¹K⁻¹

Comparing this value with the table shows that the metal is silver.

Learn more:

Specific heat brainly.com/question/7210400

#learnwithBrainly

You might be interested in
The graph shows the number of beans eaten by a
il63 [147K]

Answer:

You didn't show a graph

Explanation:

6 0
3 years ago
Read 2 more answers
Does water pressure depend on the total amount of water present? <br><br> (Will pick brainliest)
yaroslaw [1]

Answer:

No, because pressure is determined by force and the area over which that force acts.

Explanation:

3 0
3 years ago
Radiation from the Sun The intensity of the radiation from the Sun measured on Earth is 1360 W/m2 and frequency is f = 60 MHz. T
Zina [86]

a) Total power output: 3.845\cdot 10^{26} W

b) The relative percentage change of power output is 1.67%

c) The intensity of the radiation on Mars is 540 W/m^2

Explanation:

a)

The intensity of electromagnetic radiation is given by

I=\frac{P}{A}

where

P is the power output

A is the surface area considered

In this problem, we have

I=1360 W/m^2 is the intensity of the solar radiation at the Earth

The area to be considered is area of a sphere of radius

r=1.5\cdot 10^{11} m (distance Earth-Sun)

Therefore

A=4\pi r^2 = 4 \pi (1.5\cdot 10^{11})^2=2.8\cdot 10^{23}m^2

And now, using the first equation, we can find the total power output of the Sun:

P=IA=(1360)(2.8\cdot 10^{23})=3.845\cdot 10^{26} W

b)

The energy of the solar radiation is directly proportional to its frequency, given the relationship

E=hf

where E is the energy, h is the Planck's constant, f is the frequency.

Also, the power output of the Sun is directly proportional to the energy,

P=\frac{E}{t}

where t is the time.

This means that the power output is proportional to the frequency:

P\propto f

Here the frequency increases by 1 MHz: the original frequency was

f_0 = 60 MHz

so the relative percentage change in frequency is

\frac{\Delta f}{f_0}\cdot 100 = \frac{1}{60}\cdot 100 =1.67\%

And therefore, the power also increases by 1.67 %.

c)

In this second  case, we have to calculate the new power output of the Sun:

P' = P + \frac{1.67}{100}P =1.167P=1.0167(3.845\cdot 10^{26})=3.910\cdot 10^{26} W

Now we want to calculate the intensity of the radiation measured on Mars. Mars is 60% farther from the Sun than the Earth, so its distance from the Sun is

r'=(1+0.60)r=1.60r=1.60(1.5\cdot 10^{11})=2.4\cdot 10^{11}m

Now we can find the radiation intensity with the equation

I=\frac{P}{A}

Where the area is

A=4\pi r'^2 = 4\pi(2.4\cdot 10^{11})^2=7.24\cdot 10^{23} m^2

And substituting,

I=\frac{3.910\cdot 10^{26}}{7.24\cdot 10^{23}}=540 W/m^2

Learn more about electromagnetic radiation:

brainly.com/question/9184100

brainly.com/question/12450147

#LearnwithBrainly

4 0
2 years ago
Four copper wires of equal length are connected in series. Their cross-sectional areas are 0.7 cm2 , 2.5 cm2 , 2.2 cm2 , and 3 c
Travka [436]

Answer:

22.1 V

Explanation:

We are given that

A_1=0.7 cm^2=0.7\times 10^{-4} m^2

A_2=2.5 cm^2=2.5\times 10^{-4} m^2

A_3=2.2 cm^2=2.2\times 10^{-4} m^2

A_4=3 cm^2=3\times 10^{-4} m^2

Using 1cm^2=10^{-4} m^2

We know that

R=\frac{\rho l}{A}

In series

R=R_1+R_2+R_3+R_4

R=\frac{\rho l}{A_1}+\frac{\rho l}{A_2}+\frac{\rho l}{A_3}+\frac{\rho l}{A_4}

R=\frac{\rho l}{\frac{1}{A_1}+\frac{1}{A_2}+\frac{1}{A_3}+\frac{1}{A_4}}

Substitute the values

R=\rho A(\frac{1}{0.7\times 10^{-4}}+\frac{1}{2.5\times 10^{-4}}+\frac{1}{2.2\times 10^{-4}}+\frac{1}{3\times 10^{-4}})

R=\rho l(2.62\times 10^4)

V=145 V

I=\frac{V}{R}=\frac{145}{\rho l(2.62\times 10^4)}

Voltage across the 2.5 square cm wire=IR=I\times \frac{\rho l}{A_2}

Voltage across the 2.5 square cm wire=\frac{145}{\rho l(2.62\times 10^4)}\times \frac{\rho l}{2.5\times 10^{-4}}=22.1 V

Voltage across the 2.5 square cm wire=22.1 V

6 0
3 years ago
As a person pushes a box across a floor, the energy from the person’s moving arm is transferred to the box, and the box and the
san4es73 [151]

Answer:

conserved

Explanation:

During this process the energy is conserved

3 0
3 years ago
Read 2 more answers
Other questions:
  • Please help ASAP!! I need a good grade on this!!!!
    5·1 answer
  • The rope of the length 6 m is fixed to a vertical wall in the horizontal x-direction. We send one transverse pulse on a rope in
    6·1 answer
  • A force of 20N acts on a 3.5kg mass for 10s. What is the change in the speed of the object? *Hint find the impulse first*
    12·1 answer
  • Two small conducting point charges, separated by 0.4 m, carry a total charge of 200 C. They repel one another with a force of 12
    10·1 answer
  • What direction does the medium vibrate
    6·2 answers
  • Determine the acceleration of Earth due to its motion around the Sun. Assume the Earth's orbit to be circular with a radius of 1
    11·1 answer
  • A 16 g rifle bullet traveling 240 m/s buries itself in a 3.6 kg pendulum hanging on a 2.5 m long string, which makes the pendulu
    9·1 answer
  • What is also known as a ferromagnetism
    10·1 answer
  • If the angle of refraction is 20 degrees what is the angle of incidence​
    9·1 answer
  • a school bus takes 0.50 hours to reach the school from your home. if the average speed of the bus is 20km/h, what is displacemen
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!