1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alenkasestr [34]
3 years ago
5

HELP HELP HELP Sally can paint a room in 4 hours. Joe can paint a room in 6 hours. How

Mathematics
2 answers:
Dmitry [639]3 years ago
6 0

Answer:

2 hrs, 24 min

Step-by-step explanation:

Sally:  in one hour, she can paint 1/4 of the room.

Joe: in one our, he can paint 1/6 of the room

Hour one: 1/4+1/6=3/12+2/12=5/12

1÷5/12=1*12/5=12/5

12/5= 2 & 2/5 hours, or 2.4 hours, or 2 hrs 24 minutes

Vesnalui [34]3 years ago
3 0

Answer: 2.4 hours

Step-by-step explanation:

1/4 1/6

LCM

3/12+2/12=5/12 repricical 12/5 =2.4

You might be interested in
the tens digit of a two digit is 7. if the order of the digit is reversed the new number obtained is 45 less than the original n
kirill [66]

9514 1404 393

Answer:

  72

Step-by-step explanation:

The difference of 45 means the difference of digits in the number is 45/9 = 5. So, the ones digit is 7-5 = 2, and the number is 72.

__

If you want an equation, you can use x for the ones digit.

  70 +x = 45 +(10x +7)

  18 = 9x . . . . . . . . . . . . . subtract 52+x from both sides

  2 = x

The ones digit is 2, so the number is 72.

_____

<em>Further explanation</em>

If you start with the two digits xy in a number and reverse them, the difference between the numbers xy and yx is ...

  (10x +y) -(10y +x) = 9(x -y)

This tells you the difference between the digit-reversed numbers is 9 times the difference between the digits.

5 0
3 years ago
Read 2 more answers
The number of ducks and pigs in a field totals 38. The total number of legs among them is 94 assuming each duck has exactly two
Reika [66]

Answer:

22 pigs and 3 ducks

Step-by-step explanation:

22 pigs would make 88 legs and 3 ducks will make 6 legs so u add that together and you get 94 legs (smile) ik i'm smart lol

8 0
4 years ago
Please help and thank you
hram777 [196]

Answer:

First one

Step-by-step explanation:

The formula is y-y=m(x-x)

Since the coordinates are negatives. Double negatives make positive.

Hope that helps:)

7 0
3 years ago
Hi, could someone help me differentiate Q6 b with the use if ln​
Lady bird [3.3K]

Answer:

\displaystyle \frac{dy}{dx} = \frac{-(2x - 3)(6x - 43)}{(3x + 4)^4}

General Formulas and Concepts:

<u>Pre-Algebra</u>

  • Equality Properties

<u>Algebra II</u>

  • Natural logarithms ln and Euler's number e
  • Logarithmic Property [Dividing]:                                                                   \displaystyle log(\frac{a}{b}) = log(a) - log(b)
  • Logarithmic Property [Exponential]:                                                             \displaystyle log(a^b) = b \cdot log(a)

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation
  • Implicit Differentiation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Derivative Rule [Quotient Rule]:                                                                           \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Derivative Rule [Chain Rule]:                                                                                 \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = \frac{(2x - 3)^2}{(3x + 4)^3}

<u>Step 2: Rewrite</u>

  1. [Equality Property] ln both sides:                                                                 \displaystyle lny = ln \bigg[ \frac{(2x - 3)^2}{(3x + 4)^3} \bigg]
  2. Expand [Logarithmic Property - Dividing]:                                                   \displaystyle lny = ln(2x - 3)^2 - ln(3x + 4)^3
  3. Simplify [Logarithmic Property - Exponential]:                                             \displaystyle lny = 2ln(2x - 3) - 3ln(3x + 4)

<u>Step 3: Differentiate</u>

  1. Implicit Differentiation:                                                                                 \displaystyle \frac{dy}{dx}[lny] = \frac{dy}{dx} \bigg[ 2ln(2x - 3) - 3ln(3x + 4) \bigg]
  2. Logarithmic Differentiation [Derivative Rule - Chain Rule]:                       \displaystyle \frac{1}{y} \ \frac{dy}{dx} = 2 \bigg( \frac{1}{2x - 3} \bigg)\frac{dy}{dx}[2x - 3] - 3 \bigg( \frac{1}{3x + 4} \bigg) \frac{dy}{dx}[3x + 4]
  3. Basic Power Rule:                                                                                         \displaystyle \frac{1}{y} \ \frac{dy}{dx} = 4 \bigg( \frac{1}{2x - 3} \bigg) - 9 \bigg( \frac{1}{3x + 4} \bigg)
  4. Simplify:                                                                                                         \displaystyle \frac{1}{y} \ \frac{dy}{dx} = \frac{4}{2x - 3} - \frac{9}{3x + 4}
  5. Isolate  \displaystyle \frac{dy}{dx}:                                                                                                     \displaystyle \frac{dy}{dx} = y \bigg( \frac{4}{2x - 3} - \frac{9}{3x + 4} \bigg)
  6. Substitute in <em>y</em> [Derivative]:                                                                           \displaystyle \frac{dy}{dx} = \frac{(2x - 3)^2}{(3x + 4)^3} \bigg( \frac{4}{2x - 3} - \frac{9}{3x + 4} \bigg)
  7. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{(2x - 3)^2}{(3x + 4)^3} \bigg[ \frac{4(3x + 4) - 9(2x - 3)}{(2x - 3)(3x +4)} \bigg]
  8. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{-(2x - 3)(6x - 43)}{(3x + 4)^4}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

Book: College Calculus 10e

8 0
3 years ago
Which expression is equivalent to the given expression? 3(x-7)+4(x^2-2x+9)
just olya [345]
I think it is 4x^2-5x+15
6 0
3 years ago
Read 2 more answers
Other questions:
  • Help this is hard!!!!!!!
    14·1 answer
  • Sam wants to get the new iPhone 6 that costs $750. He already has $60 saved toward the cost. How much will he have to save per m
    15·2 answers
  • The formula for the
    10·1 answer
  • A construction company is digging a hole for a swimming pool.The hole will be 12 yards Long 7 yards wide and 3 yards deep how ma
    8·1 answer
  • At the movie theatre, child admission is 6.10 and adult admission is 9.30 . On Tuesday, 138tickets were sold for a total sales o
    10·1 answer
  • 15 is 3/8 of what number?
    5·2 answers
  • 1. A box contains 4 red and 6 green balls. Two balls are drawn. You receive $10 if both are red and you pay $1 otherwise. What a
    8·1 answer
  • Given that S=n/2(2a+(n-1)d). If a=4,d=3 and n=20 find the value of S​
    5·2 answers
  • At Clemmons Middle School, there are 400 students in sixth grade. The ratio of girls to boys is 4:1. How many boys are in the si
    6·1 answer
  • 9. Jeremy has incorrectly simplified the expression below. Correct his mistake.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!