<span>Due to DNA and Organelle
Duplication that takes place during Interphase within a cell, during the
splitting of a cell in Mitosis, the two daughter cells should have the exact
same genetic and physical composition as the Parent Cell. so the daughter genetic make u p is also AaSs</span>
Answer: There's no way one species can become another through depuranization, which is a random change.
Explanation:
In cells, environmental (chemical or physical) and metabolic factors can cause DNA damage, which is the molecule that stores genetic material. In these cases, the damage done to the DNA is repaired.
<u>Many of these lesions cause a permanent structural damage to the DNA, which can alter the ability to be transcribed, or can cause mutated genes to be transcribed resulting in another protein.</u> Particularly, depurination is the hydrolytically cleavage of the β-N-glycosidic bond between the purines (adenosine or guanosine) and the carbon of the sugar group found in the DNA. This mutation results in the loss of the purine base and leads to the formation of apurinic site and results and severely disrupts the DNA structure. The most important causes of depurination is the presence of endogenous metabolites inside the cell as a result of various chemical reactions and due to the presence of mutagenic compounds. However, these apurinic sites <u>are usually repaired by portions of the base excision repair (BER) pathway</u>.
There's no way one species can become another through depuranization, which is a random change. Because it is highly unlikely that 5000 mutations are able to accumulate every day without being repaired, and that they are just the right mutations to have the same characteristics as a chimpanzee. <u>If the depurinations are not repaired, the cell will most likely either die or become cancerous.</u>
The main 3 parts are the magma , the central vent and a crater
Answer:
The ultimate goal of the ETC is to produce the high-energy molecule adenosine triphosphate (ATP) to catalyze biochemical reactions. The precursors of ATP, adenosine diphosphate (ADP) and inorganic phosphate (Pi) are readily imported into the mitochondrial matrix.
Explanation: