Thermal expansion<span> is the tendency of matter to change in shape, area, and volume in response to a change in temperature, through heat transfer. Temperature is a monotonic function of the average molecular kinetic energy of a substance. When a substance is heated, the kinetic energy of its molecules increases.</span>
I’m pretty sure it’s in a group (column) of the period table. Hope this helps :)))
there is a google calculator for this, but i don't know the exact formula.
Answer : 0.8663 Kg of chalcopyrite must be mined to obtained 300 g of pure Cu.
Solution : Given,
Mass of Cu = 300 g
Molar mass of Cu = 63.546 g/mole
Molar mass of
= 183.511 g/mole
- First we have to calculate the moles of Cu.

The moles of Cu = 4.7209 moles
From the given chemical formula,
we conclude that the each mole of compound contain one mole of Cu.
So, The moles of Cu = Moles of
= 4.4209 moles
- Now we have to calculate the mass of
.
Mass of
= Moles of
× Molar mass of
= 4.4209 moles × 183.511 g/mole = 866.337 g
Mass of
= 866.337 g = 0.8663 Kg (1 Kg = 1000 g)
Therefore, 0.8663 Kg of chalcopyrite must be mined to obtained 300 g of pure Cu.
Answer: 17) d. 
18. c. The empirical formula of a compound can be twice the molecular formula.
Explanation:
Molecular formula is the chemical formula which depicts the actual number of atoms of each element present in the compound.
Empirical formula is the simplest chemical formula which depicts the whole number of atoms of each element present in the compound.
To calculate the molecular formula, we need to find the valency which is multiplied by each element to get the molecular formula.
The equation used to calculate the valency is:

The empirical mass can be calculated from empirical formula and molar mass must be known.
17. Thus the empirical formula of
should be 
18. The molecular formula will either be same as empirical formula or is a whole number multiple of empirical formula. Thus the empirical formula of a compound can never be twice the molecular formula.