When most radioactive atoms “spontaneously” decay to a more stable form the “additional” energy is converted to radiation with the emission of radioactive particles.
<h3>What is radioactivity?</h3>
Radioactivity is the spontaneous decay of the nucleus of an atom with the emission of radiation and nuclear particles.
Elements that spontaneously decay are called radioactive elements.
When these radioactive elements decay, they form more stable isotopes or elements.
The spontaneous decay of atoms of radioactive elements is in order for the nucleus of the atom to become stable and non-radioactive.
Learn more about radioactivity at:
brainly.com/question/26626062
#SPJ1
Answer:
Buffer B has the highest buffer capacity.
Buffer C has the lowest buffer capacity.
Explanation:
An effective weak acid-conjugate base buffer should have pH equal to
of the weak acid. For buffers with the same pH, higher the concentrations of the components in a buffer, higher will the buffer capacity.
Acetic acid is a weak acid and
is the conjugate base So, all the given buffers are weak acid-conjugate base buffers. The pH of these buffers are expressed as (Henderson-Hasselbalch):
![pH=pK_{a}(CH_{3}COOH)+log\frac{[CH_{3}COO^{-}]}{[CH_{3}COOH]}](https://tex.z-dn.net/?f=pH%3DpK_%7Ba%7D%28CH_%7B3%7DCOOH%29%2Blog%5Cfrac%7B%5BCH_%7B3%7DCOO%5E%7B-%7D%5D%7D%7B%5BCH_%7B3%7DCOOH%5D%7D)

Buffer A: 
Buffer B: 
Buffer C: 
So, both buffer A and buffer B has same pH value which is also equal to
. Buffer B has higher concentrations of the components as compared to buffer A, Hence, buffer B has the highest buffer capacity.
The pH of buffer C is far away from
. Therefore, buffer C has the lowest buffer capacity.
The number of molecules that are in balloon are = 2.227 x10^23 molecules
<h3> calculation</h3>
calculate the number of moles of NO
moles = mass/molar mass
molar mass of NO = 14+ 16 = 30 g/mol
moles is therefore= 11.1 g/30g/mol= 0.37 moles
by use of Avogadro's constant that is
1 mole= 6.02 x10^23 molecules
0.37 =? molecules
=(6.02 x10^23 x 0.37 moles)/ 1mole=2.227 x10^23 molecules
I'm pretty sure its graph 4