Answer:
DE = 6 cm
Step-by-step explanation:
Let DE = x cm.
Since DE is parallel to AB therefore by the alternate interior angles theorem, m∠BAD = m∠ADE and m∠ABE = m∠DEB ............(1)
As AD is an angle bisector of ∠A, therefore m∠EAD = m∠DAB ; Since BE is an angle bisector of ∠B ⇒ m∠ABE = m∠EBD.
Therefore, from (1) We get , m∠EAD = m∠ADE and m∠EBD = m∠BED.
So, the triangles ADE and EDB are then isosceles with AE = ED and ED = DB.
So AE = DE = DB = x, and since the perimeter of ABDE is 30 cm, then
12 + x + x + x = 30
⇒ 12 + 3x = 30
⇒ x = 6
Hence, the length of DE is 6 cm.
3 more than the produce of 12 and 4.
It’s either C or B but I’m not sure