Answer:
2 + 2 = 4
Grass is: green
Does ice melt? yes it does
<span>Simplifying
x4 = 16
Solving
x4 = 16
Solving for variable 'x'.
Move all terms containing x to the left, all other terms to the right.
Simplifying
x4 = 16
Reorder the terms:
-16 + x4 = 16 + -16
Combine like terms: 16 + -16 = 0
-16 + x4 = 0
Factor a difference between two squares.
(4 + x2)(-4 + x2) = 0
Factor a difference between two squares.
(4 + x2)((2 + x)(-2 + x)) = 0
Subproblem 1
Set the factor '(4 + x2)' equal to zero and attempt to solve:
Simplifying
4 + x2 = 0
Solving
4 + x2 = 0
Move all terms containing x to the left, all other terms to the right.
Add '-4' to each side of the equation.
4 + -4 + x2 = 0 + -4
Combine like terms: 4 + -4 = 0
0 + x2 = 0 + -4
x2 = 0 + -4
Combine like terms: 0 + -4 = -4
x2 = -4
Simplifying
x2 = -4
The solution to this equation could not be determined.
This subproblem is being ignored because a solution could not be determined.
Subproblem 2
Set the factor '(2 + x)' equal to zero and attempt to solve:
Simplifying
2 + x = 0
Solving
2 + x = 0
Move all terms containing x to the left, all other terms to the right.
Add '-2' to each side of the equation.
2 + -2 + x = 0 + -2
Combine like terms: 2 + -2 = 0
0 + x = 0 + -2
x = 0 + -2
Combine like terms: 0 + -2 = -2
x = -2
Simplifying
x = -2
Sub-problem 3
Set the factor '(-2 + x)' equal to zero and attempt to solve:
Simplifying
-2 + x = 0
Solving
-2 + x = 0
Move all terms containing x to the left, all other terms to the right.
Add '2' to each side of the equation.
-2 + 2 + x = 0 + 2
Combine like terms: -2 + 2 = 0
0 + x = 0 + 2
x = 0 + 2
Combine like terms: 0 + 2 = 2
x = 2
Simplifying
x = 2Solutionx = {-2, 2}</span>
Answer:
Step-by-step explanation:
You can represent Morgan's scenario with the expression, 25w + 615, and you can represent Kendall's scenario with the expression, 15w + 975. To find out when they both have the same amount of money in their accounts, you set them equal to each other and solve for w:
25w + 615 = 15w + 975
25w = 15w + 360
10w = 360
w = 36
Morgan and Kendall will have the same amount of money after 36 weeks.
Answer:
4
Step-by-step explanation:
Answer:
There are infinite number of triangles that could be achieved with those angles.
To picture this, we only have to imagine a triangle that is either smaller or bigger than the one at hand.
Tracing a series of paralell lines (which guarantee that the angles are being kept), we can draw triangles for infinite values of x,y and z.