<u>Step-by-step explanation:</u>
transform the parent graph of f(x) = ln x into f(x) = - ln (x - 4) by shifting the parent graph 4 units to the right and reflecting over the x-axis
(???, 0): 0 = - ln (x - 4)

0 = ln (x - 4)

1 = x - 4
<u> +4 </u> <u> +4 </u>
5 = x
(5, 0)
(???, 1): 1 = - ln (x - 4)

1 = ln (x - 4)

e = x - 4
<u> +4 </u> <u> +4 </u>
e + 4 = x
6.72 = x
(6.72, 1)
Domain: x - 4 > 0
<u> +4 </u> <u>+4 </u>
x > 4
(4, ∞)
Vertical asymptotes: there are no vertical asymptotes for the parent function and the transformation did not alter that
No vertical asymptotes
*************************************************************************
transform the parent graph of f(x) = 3ˣ into f(x) = - 3ˣ⁺⁵ by shifting the parent graph 5 units to the left and reflecting over the x-axis
Domain: there is no restriction on x so domain is all real number
(-∞, ∞)
Range: there is a horizontal asymptote for the parent graph of y = 0 with range of y > 0. the transformation is a reflection over the x-axis so the horizontal asymptote is the same (y = 0) but the range changed to y < 0.
(-∞, 0)
Y-intercept is when x = 0:
f(x) = - 3ˣ⁺⁵
= - 3⁰⁺⁵
= - 3⁵
= -243
Horizontal Asymptote: y = 0 <em>(explanation above)</em>
Answer:
20° and 90°
Step-by-step explanation:
Let 2x = measure of 1st angle
then 9x = measure of 2nd angle
The sum of the measures of the angles of a quad is 360
200 + 50 + 2x + 9x = 360
250 + 11x = 360
11x = 110
x = 10
2x = 20°
9x = 90°
Answer: 9
Step-by-step explanation:
4x²-7x+7 f(2)=4*(2)^2-7(2)+7=16-14+7=9
Answer:
P(X = x, Y = y) = f(x, y)
Step-by-step explanation:
Let X be a discrete random variable, and suppose that the possible values that it can assume are given by x1, x2, x3, . . . , arranged in some order. Suppose also that these values are assumed with probabilities given by
P(X = xk) = f(xk) k = 1, 2, . . . (1)
It is convenient to introduce the probability function, also referred to as probability distribution, given by
P(X = x) = f(x)
If X and Y are two discrete random variables, we define the joint probability function
of X and Y by
P(X = x, Y = y) = f(x, y)
where f(x, y) ≥ 0