Answer:
Hamburger Chicken
Adults 65 60 125
children 55 20 75
120 80 200
a)What is the probability that a randomly selected individual is an adult?
Total no. of adults = 125
Total no. of people 200
The probability that a randomly selected individual is an adult =
b) What is the probability that a randomly selected individual is a child and prefers chicken?
No. of child prefers chicken = 20
The probability that a randomly selected individual is a child and prefers chicken=
c)Given the person is a child, what is the probability that this child prefers a hamburger?
No. of children prefer hamburger = 55
No. of child = 75
The probability that this child prefers a hamburger=
d) Assume we know that a person has ordered chicken, what is the probability that this individual is an adult?
No. of adults prefer chicken = 60
No. of total people like chicken = 80
A person has ordered chicken, the probability that this individual is an adult=
Its less than bc if you turn them into decimals, 15/53 would be 0.42 and 12/20 would be 0.60
I'd suggest using "elimination by addition and subtraction" here, altho' there are other approaches (such as matrices, substitution, etc.).
Note that if you add the 3rd equation to the second, the x terms cancel out, and you are left with the system
- y + 3z = -2
y + z = -2
-----------------
4z = -4, so z = -1.
Next, multiply the 3rd equation by 2: You'll get -2x + 2y + 2z = -2.
Add this result to the first equation. The 2x terms will cancel, leaving you with the system
2y + 2z = -2
y + z = 4
This would be a good time to subst. -1 for z. We then get:
-2y - 2 = -2. Then y must be 0. y = 0.
Now subst. -1 for z and 0 for y in any of the original equations.
For example, x - (-1) + 3(0) = -2, so x + 1 = -2, or x = -3.
Then a tentative solution is (-3, -1, 0).
It's very important that you ensure that this satisfies all 3 of the originale quations.
Answer:
y=11/3
Step-by-step explanation:
just 10 plus 1 gives 11 and crisscrossing and will get 3y=11 and dividing both sides by 3 to get y free then will get y=11/3