1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
telo118 [61]
3 years ago
14

3/4-(-7/6) Write your answer in simplest form.​

Mathematics
1 answer:
allsm [11]3 years ago
6 0

Answer:

\frac{3}{4}  - ( -  \frac{7}{6} ) \\  =  \frac{3}{4}  +  \frac{7}{6}  \\  =  \frac{23}{12}  \\  = 1 \frac{11}{12}

You might be interested in
Please help me for the love of God if i fail I have to repeat the class
Elena-2011 [213]

\theta is in quadrant I, so \cos\theta>0.

x is in quadrant II, so \sin x>0.

Recall that for any angle \alpha,

\sin^2\alpha+\cos^2\alpha=1

Then with the conditions determined above, we get

\cos\theta=\sqrt{1-\left(\dfrac45\right)^2}=\dfrac35

and

\sin x=\sqrt{1-\left(-\dfrac5{13}\right)^2}=\dfrac{12}{13}

Now recall the compound angle formulas:

\sin(\alpha\pm\beta)=\sin\alpha\cos\beta\pm\cos\alpha\sin\beta

\cos(\alpha\pm\beta)=\cos\alpha\cos\beta\mp\sin\alpha\sin\beta

\sin2\alpha=2\sin\alpha\cos\alpha

\cos2\alpha=\cos^2\alpha-\sin^2\alpha

as well as the definition of tangent:

\tan\alpha=\dfrac{\sin\alpha}{\cos\alpha}

Then

1. \sin(\theta+x)=\sin\theta\cos x+\cos\theta\sin x=\dfrac{16}{65}

2. \cos(\theta-x)=\cos\theta\cos x+\sin\theta\sin x=\dfrac{33}{65}

3. \tan(\theta+x)=\dfrac{\sin(\theta+x)}{\cos(\theta+x)}=-\dfrac{16}{63}

4. \sin2\theta=2\sin\theta\cos\theta=\dfrac{24}{25}

5. \cos2x=\cos^2x-\sin^2x=-\dfrac{119}{169}

6. \tan2\theta=\dfrac{\sin2\theta}{\cos2\theta}=-\dfrac{24}7

7. A bit more work required here. Recall the half-angle identities:

\cos^2\dfrac\alpha2=\dfrac{1+\cos\alpha}2

\sin^2\dfrac\alpha2=\dfrac{1-\cos\alpha}2

\implies\tan^2\dfrac\alpha2=\dfrac{1-\cos\alpha}{1+\cos\alpha}

Because x is in quadrant II, we know that \dfrac x2 is in quadrant I. Specifically, we know \dfrac\pi2, so \dfrac\pi4. In this quadrant, we have \tan\dfrac x2>0, so

\tan\dfrac x2=\sqrt{\dfrac{1-\cos x}{1+\cos x}}=\dfrac32

8. \sin3\theta=\sin(\theta+2\theta)=\dfrac{44}{125}

6 0
3 years ago
THIRTY FIVE POINTS.
son4ous [18]

Answer: 31500 to 38500

Step-by-step explanation:

Lets find lower limit of guess

35000 - ( 35000 * 10% )

= 31500

Upper limit of guess

35000 + ( 35000 * 10% )

= 38500

So your guess can be anything between these two values.

3 0
3 years ago
Lauren has started a business baking cupcakes. It takes one minute to frost each batch. How many will it take her and 4 friends
Mamont248 [21]
Do 20 times 4 then u have your answer
8 0
3 years ago
Please Help!!! Will give brainliest
qaws [65]

36 cm^2

Step-by-step explanation:

<u>Small</u><u> </u><u>window</u>

Length: 2cm

Width: 2cm

<u>Area</u><u>:</u> 4 cm^2

<u>Big window</u>

Length: 4cm

Width: 3cm

<u>Area</u><u>:</u> 12 cm^2

Total area of the windows:

(Area of 4 small windows + area of 1 big window)

(4 cm^2 x 4 + 12cm^2)

= <u>28 cm^2</u>

<u>Above</u><u> </u><u>window</u><u> </u><u>(</u><u>approx</u><u>.</u><u>)</u>

<u>Rectangle</u>

Length: 3cm

Width: 2cm

<u>Area</u><u>:</u> 6 cm^2

<u>T</u><u>riangle</u>

Base: 1cm

Height: 1cm

<u>Area</u><u>:</u> 2 x 0.5 cm^2 = 1 cm^2

<u>Square</u><u> </u><u>(</u><u>between</u><u> </u><u>the</u><u> </u><u>triangles</u><u>)</u>

Length: 1cm

Width: 1cm

<u>Area</u><u>:</u> 1 cm^2

= 8 cm^2

<u>TOTAL</u><u> </u><u>AREA</u><u> </u><u>OF</u><u> </u><u>ALL</u><u> </u><u>WINDOWS</u>

= AREA OF 4 WINDOWS + AREA OF BIG WINDOW + AREA OF ABOVE WINDOW

= 16 cm^2 + 12 cm^2 + 8 cm^2

<h3>= <u>36 cm^2</u></h3>

<em>I</em><em> </em><em>hope</em><em> </em><em>I</em><em> </em><em>made</em><em> </em><em>the</em><em> </em><em>explanations</em><em> </em><em>clear</em><em> </em><em>enough</em><em> </em><em>to</em><em> </em><em>make</em><em> </em><em>it</em><em> </em><em>easier</em><em> </em><em>for</em><em> </em><em>you</em><em> </em><em>to</em><em> </em><em>understand</em><em>!</em>

8 0
1 year ago
Which statement is true about PQ in relation to the circumscribed circle ?
tatyana61 [14]

check the picture below.

5 0
3 years ago
Read 2 more answers
Other questions:
  • Which line segment is parallel to plane FGKJ?
    14·1 answer
  • 3. Find the product of 25x^2y and -6x²y3
    14·1 answer
  • Help asap!!! I really need help on this
    8·1 answer
  • X = ?????? Geometry
    7·1 answer
  • -16&lt;8/3t solve the inequality <br><br><br> PLEASE DO IT QUICK
    15·1 answer
  • Solve for X. <br><br> A. 10.96 <br> B. 4.88<br> C. 0.04<br> D. 5.34
    5·1 answer
  • Please help i’ll mark u brainliest
    12·1 answer
  • -5= -10+y how do i reorder this and why do i reorder it in that way? i think i know how to reorder it i'm just confused on why i
    10·2 answers
  • Curtis has started to bike every day. His goal is to ride 16.5 kilometers each day. He bikes of that distance on Monday. He bike
    6·1 answer
  • Write an equation of the line passing through point p that is parallel to the given line.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!