Step-by-step explanation:
- <em><u>6</u></em><em><u>4</u></em><em><u>+</u></em><em><u>7</u></em><em><u>2</u></em><em><u>+</u></em><em><u>4</u></em><em><u>x</u></em><em><u>+</u></em><em><u>2</u></em><em><u>0</u></em><em><u>=</u></em><em><u>1</u></em><em><u>8</u></em><em><u>0</u></em><em><u>(</u></em><em><u>Sum </u></em><em><u>of </u></em><em><u>angles </u></em><em><u>of </u></em><em><u>a </u></em><em><u>triangle </u></em><em><u>)</u></em>
- <em><u>1</u></em><em><u>5</u></em><em><u>6</u></em><em><u>+</u></em><em><u>4</u></em><em><u>x</u></em><em><u>=</u></em><em><u>1</u></em><em><u>8</u></em><em><u>0</u></em>
- <em><u>4</u></em><em><u>x</u></em><em><u>=</u></em><em><u>1</u></em><em><u>8</u></em><em><u>0</u></em><em><u>-</u></em><em><u>1</u></em><em><u>5</u></em><em><u>6</u></em>
- <em><u>4</u></em><em><u>x</u></em><em><u>=</u></em><em><u>2</u></em><em><u>4</u></em>
- <em><u>X=</u></em><em><u>2</u></em><em><u>4</u></em><em><u>/</u></em><em><u>4</u></em>
- <em><u>X=</u></em><em><u>6</u></em>
<em><u>Therefore</u></em><em><u> </u></em><em>The </em><em>value</em><em> </em><em>of </em><em>X </em><em>is </em><em>6</em><em> </em><em>degree</em><em>.</em>
Answer:
9
Step-by-step explanation:
range is the range from the lowest # through the biggest # in other words subtract the smaller number from the bigger number
L = 1 in
w = 5 in
h = 3 in
d = 5.9160797830996 in
S = 46 in2
V = 15 in<span>3
i don't know which one your looking for so i solved for all the measure hope i hepled
</span>
Think of the three rectangles as a single large rectangle and find its area.
For the large rectangle made up of the three small rectangles:
Length = 8 cm + 15 cm + 17 cm = 40 cm
Width = 11 cm
area = length * width
area = 40 cm * 11 cm
area = 440 cm^2
Answer:

Step-by-step explanation:
<u>Factored form of a parabola</u>

where:
- p and q are the x-intercepts.
- a is some constant.
Given x-intercepts:
Therefore:


To find a, substitute the given point (4, 8) into the equation and solve for a:




Therefore, the equation of the parabola in factored form is:

Expand so that the equation is in standard form:



