<u>We'll assume the quadratic equation has real coefficients</u>
Answer:
<em>The other solution is x=1-8</em><em>i</em><em>.</em>
Step-by-step explanation:
<u>The Complex Conjugate Root Theorem</u>
if P(x) is a polynomial in x with <em>real coefficients</em>, and a + bi is a root of P(x) with a and b real numbers, then its complex conjugate a − bi is also a root of P(x).
The question does not specify if the quadratic equation has real coefficients, but we will assume that.
Given x=1+8i is one solution of the equation, the complex conjugate root theorem guarantees that the other solution must be x=1-8i.
You have to divide 400 by 5. That will equal 80. Since the ratio is 3:2 Just multiply 3 by 80 then 2 by 80! :-)
You can check it by simplifying it again.
Answer:
The solution to the inequality is 0.
Answer:
Step-by-step explanation: