Use the rules of logarithms and the rules of exponents.
... ln(ab) = ln(a) + ln(b)
... e^ln(a) = a
... (a^b)·(a^c) = a^(b+c)
_____
1) Use the second rule and take the antilog.
... e^ln(x) = x = e^(5.6 + ln(7.5))
... x = (e^5.6)·(e^ln(7.5)) . . . . . . use the rule of exponents
... x = 7.5·e^5.6 . . . . . . . . . . . . use the second rule of logarithms
... x ≈ 2028.2 . . . . . . . . . . . . . use your calculator (could do this after the 1st step)
2) Similar to the previous problem, except base-10 logs are involved.
... x = 10^(5.6 -log(7.5)) . . . . . take the antilog. Could evaluate now.
... = (1/7.5)·10^5.6 . . . . . . . . . . of course, 10^(-log(7.5)) = 7.5^-1 = 1/7.5
... x ≈ 53,080.96
Answer:
<em>c</em><em>.</em><em> </em><em>t</em><em>h</em><em>e</em><em> </em><em>a</em><em>m</em><em>o</em><em>u</em><em>n</em><em>t</em><em> </em><em>o</em><em>f</em><em> </em><em>w</em><em>r</em><em>i</em><em>t</em><em>i</em><em>n</em><em>g</em><em> </em><em>s</em><em>p</em><em>a</em><em>c</em><em>e</em><em> </em><em>o</em><em>n</em><em> </em><em>a</em><em> </em><em>p</em><em>a</em><em>g</em><em>e</em><em>.</em>
Step-by-step explanation:
length - the measurement or extent of something from end to end the greater of two or the greatest of three dimensions of a body.
Answer:
A. -(5y+2) + y = 5
Step-by-step explanation:
Solving the above Equation given to us in the Question,
-x + y = 5...... Equation 1
x - 5y = 2....... Equation 2
Step 1
We make x subject of the formula in Equation 2
---> x= 5y + 2
Step 2
This would be to substitute 5y + 2 for x in Equation 1
-x + y = 5...... Equation 1
-(5y+2) + y = 5
Hence, Option A is the correct option
Answer:
x=3
Step-by-step explanation: