Answer:
2x - y = 6
Step-by-step explanation:
The equation of a line in standard form is
Ax + By = C ( A is a positive integer and B, C are integers )
Given
y = 2x - 6 ( add 6 to both sides )
y + 6 = 2x ( subtract y from both sides )
6 = 2x - y, that is
2x - y = 6 ← in standard form
Answer:

Step-by-step explanation:
If
, then
. It follows that
![\begin{aligned} \\\frac{g(x+h)-g(x)}{h} &= \frac{1}{h} \cdot [g(x+h) - g(x)] \\&= \frac{1}{h} \left( \frac{1}{x+h} - \frac{1}{x} \right)\end{aligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7D%20%5C%5C%5Cfrac%7Bg%28x%2Bh%29-g%28x%29%7D%7Bh%7D%20%26%3D%20%5Cfrac%7B1%7D%7Bh%7D%20%5Ccdot%20%5Bg%28x%2Bh%29%20-%20g%28x%29%5D%20%5C%5C%26%3D%20%5Cfrac%7B1%7D%7Bh%7D%20%5Cleft%28%20%5Cfrac%7B1%7D%7Bx%2Bh%7D%20-%20%5Cfrac%7B1%7D%7Bx%7D%20%5Cright%29%5Cend%7Baligned%7D)
Technically we are done, but some more simplification can be made. We can get a common denominator between 1/(x+h) and 1/x.

Now we can cancel the h in the numerator and denominator under the assumption that h is not 0.

Answer:
0>-7
I'm not really sure last time I did this was last year