Answer: D ( 17/20)
Step-by-step explanation:
The two choices are:
The ‘standard’ tariff charges = $0.10 per unit
The ‘day/night tariff’ = $0.12 per unit for each unit consumed between 06:00 and 22:00 but only $0.05 for each unit consumed between 22:00 and 06:00
The day time is between 22:00 and 06:00
Time = 22 - 6 = 16 hours
Let assume that the charges are unit per hour.
For standard tariff = (16 × 0.10) + 0.2
Standard tariff = 1.6 + 0.2 = 1.8
For day/night = (16 × 0.12) + 0.2
= 1.92 + 0.2
= 2.12
The proportion will be
1.8/2.12 = 17/20 ( approximately)
Answer:
(-2, -8)
x = -2
y = -8
General Formulas and Concepts:
<u>Pre-Algebra</u>
- Order of Operations: BPEMDAS
- Equality Properties
<u>Algebra I</u>
- Solving systems of equations using substitution/elimination
Step-by-step explanation:
<u>Step 1: Define systems</u>
13x - 6y = 22
x = y + 6
<u>Step 2: Solve for </u><em><u>y</u></em>
<em>Substitution</em>
- Substitute in <em>x</em>: 13(y + 6) - 6y = 22
- Distribute 13: 13y + 78 - 6y = 22
- Combine like terms: 7y + 78 = 22
- Isolate <em>y</em> term: 7y = -56
- Isolate <em>y</em>: y = -8
<u>Step 3: Solve for </u><em><u>x</u></em>
- Define original equation: x = y + 6
- Substitute in <em>y</em>: x = -8 + 6
- Add: x = -2
When you have 3 choices for each of 6 spins, the number of possible "words" is
3^6 = 729
The number of permutations of 6 things that are 3 groups of 2 is
6!/(2!×2!×2!) = 720/8 = 90
A) The probability of a word containing two of each of the letters is 90/729 = 10/81
The number of permutations of 6 things from two groups of different sizes is
(2 and 4) : 6!/(2!×4!) = 15
(3 and 3) : 6!/(3!×3!) = 20
(4 and 2) : 15
(5 and 1) : 6
(6 and 0) : 1
B) The number of ways there can be at least 2 "a"s and no "b"s is
15 + 20 + 15 + 6 + 1 = 57
The probability of a word containing at least 2 "a"s and no "b"s is 57/729 = 19/243.
_____
These numbers were verified by listing all possibilities and actually counting the ones that met your requirements.