Try to use photo math it gives you the work and answer
I'm sure it's B
hope this helps :)
Answer:
B is one is there anymore options
Step-by-step explanation:
Answer:
Step-by-step explanation:
The question in text and on the picture are different.
Going by picture.
When stating the congruence, it is important to stick to right order of vertices.
The first triangle is ΔCBA
<u>Corresponding angles are:</u>
- ∠C ≅ ∠D, ∠B ≅ ∠E, ∠A ≅ ∠ F
<u>Therefore the second triangle is:</u>
Answer:
![\displaystyle \frac{dy}{dx} = -2x \tan (x^2)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bdy%7D%7Bdx%7D%20%3D%20-2x%20%5Ctan%20%28x%5E2%29)
General Formulas and Concepts:
<u>Calculus</u>
Differentiation
- Derivatives
- Derivative Notation
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Chain Rule]: ![\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28g%28x%29%29%5D%20%3Df%27%28g%28x%29%29%20%5Ccdot%20g%27%28x%29)
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>
![\displaystyle y = \ln (\cos x^2)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%20%3D%20%5Cln%20%28%5Ccos%20x%5E2%29)
<u>Step 2: Differentiate</u>
- Logarithmic Differentiation [Derivative Rule - Chain Rule]:
![\displaystyle y' = \frac{(\cos x^2)'}{\cos x^2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%5Cfrac%7B%28%5Ccos%20x%5E2%29%27%7D%7B%5Ccos%20x%5E2%7D)
- Trigonometric Differentiation [Derivative Rule - Chain Rule]:
![\displaystyle y' = \frac{-\sin x^2 (x^2)'}{\cos x^2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%5Cfrac%7B-%5Csin%20x%5E2%20%28x%5E2%29%27%7D%7B%5Ccos%20x%5E2%7D)
- Basic Power Rule:
![\displaystyle y' = \frac{-2x \sin x^2}{\cos x^2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%5Cfrac%7B-2x%20%5Csin%20x%5E2%7D%7B%5Ccos%20x%5E2%7D)
- Rewrite [Trigonometric Identities]:
![\displaystyle y' = -2x \tan (x^2)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20-2x%20%5Ctan%20%28x%5E2%29)
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation